K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

\(n=5\Rightarrow P\left(n\right)=5^2-1=24⋮4\left(đ\right)\\ n=2\Rightarrow P\left(n\right)=2^2-1=3⋮4\left(s\right)\)

Vậy khi n=5 thì mệnh đề đã cho là mệnh đề đúng.Khi n=2 thì mệnh đề đã cho là mệnh đề sai.

CÁC BẠN GIẢI JUP MIK VỚI !! :))Bài 1: Xét tính đúng sai của các mệnh đề sau:a) Phương trình có hai nghiệm phân biệt.b) 2k là số chẵn. (k là số nguyên bất kì)c) 211 – 1 chia hết cho 11.Bài 2: Cho tứ giác ABDC: Xét hai mệnh đềP: Tứ giác ABCD là hình vuông.Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính...
Đọc tiếp

CÁC BẠN GIẢI JUP MIK VỚI !! :))

Bài 1: Xét tính đúng sai của các mệnh đề sau:

a) Phương trình có hai nghiệm phân biệt.

b) 2k là số chẵn. (k là số nguyên bất kì)

c) 211 – 1 chia hết cho 11.

Bài 2: Cho tứ giác ABDC: Xét hai mệnh đề

P: Tứ giác ABCD là hình vuông.

Q: Tứ giác ABCD là hình chữ nhật có hai đường chéo bằng vuông góc với nhau.

Hãy phát biểu mệnh đề P ↔ Q bằng hai cách khác nhau, xét tính đúng sai của các mệnh đề đó.

Bài 3: Cho mệnh đề chứa biến P(n): n2 – 1 chia hết cho 4 với n là số nguyên. Xét tính đúng sai của mệnh đề khi n = 5 và n = 2.

Bài 4: Nêu mệnh đề phủ định của các mệnh đề sau:

Bài tập mệnh đề toán học lớp 10

Bài 5: Xét tính đúng sai và nêu mệnh đề phủ định của các mệnh đề:

a) Tứ giác ABCD là hình chữ nhật.

b) 16 là số chính phương.

Bài tập mệnh đề toán học lớp 10

Bài 6: Cho tứ giác ABCD và hai mệnh đề:

P: Tổng 2 góc đối của tứ giác bằng 1800;

Q: Tứ giác nội tiếp được đường tròn.

Hãy phát biểu mệnh đề kéo theo P => Q và xét tính đúng sai của mệnh đề này.

Bài 7: Cho hai mệnh đề

P: 2k là số chẵn.

Q: k là số nguyên

Hãy phát biểu mệnh đề kéo theo và xét tính đúng sai của mệnh đề.

Bài 8: Hoàn thành mệnh đề đúng:

Tam giác ABC vuông tại A nếu và chỉ nếu ...................

- Viết lại mệnh đề dưới dạng một mệnh đề tương đương.

Bài 9: Xét tính đúng sai của các mệnh đề và viết mệnh đề phủ định của các mệnh đề.

Bài tập mệnh đề toán học lớp 10

Bài 10: Xét tính đúng sai của các suy luận sau: (mệnh đề kéo theo)

Bài tập mệnh đề toán học lớp 10

Bài 11: Phát biểu điều kiện cần và đủ để một:

  • Tam giác là tam giác cân.
  • Tam giác là tam giác đều.
  • Tam giác là tam giác vuông cân.
  • Tam giác đồng dạng với tam giác khác cho trước.
  • Phương trình bậc 2 có hai nghiệm phân biệt.
  • Phương trình bậc 2 có nghiệm kép.
  • Số tự nhiên chia hết cho 2; cho 3; cho 5; cho 6; cho 9 và cho 11.

Bài 12: Chứng mình rằng: Với hai số dương a, b thì a + b ≥ 2√ab.

Bài 13: Xét tính đúng sai của mệnh đề:

Nếu một số tự nhiên chia hết cho 15 thì chia hết cho cả 3 và 5.

Bài 14: Phát biểu và chứng minh định lí sau:

a) n là số tự nhiên, n2 chia hết cho 3 thì n cũng chia hết cho 3.

b) n là số tự nhiên, n2 chia hết cho 6 thì n cũng chia hết cho cả 6; 3 và 2.

(Chứng minh bằng phản chứng)

1
HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Với n = 32, ta có các mệnh đề P, Q khi đó là:

P: “Số tự nhiên 32 chia hết cho 16”;

Q: “Số tự nhiên 32 chia hết cho 8”;

Mệnh đề P ⇒ Q: “Nếu số tự nhiên 32 chia hết cho 16 thì số tự nhiên 32 chia hết cho 8”.

Đây là mệnh đề đúng vì 32 chia hết cho 16 và 8.

b) Với n = 40, ta có các mệnh đề P, Q khi đó là:

P: “Số tự nhiên 40 chia hết cho 16”;

Q: “Số tự nhiên 40 chia hết cho 8”;

Mệnh đề đảo của mệnh đề P ⇒ Q là mệnh đề Q ⇒ P: “Nếu số tự nhiên 40 chia hết cho 8 thì số tự nhiên 40 chia hết cho 16”.

Mệnh đề đảo này là mệnh đề sai. Vì 40 chia hết cho 8 nhưng 40 không chia hết cho 16.

\(\overline{A}:\forall x\in N;n^2+3n⋮̸3\)

Mệnh đề phủ định này sai khi n=3 

Vì khi đó, n^2+3n=9+9=18 chia hết cho 3

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a)

+) \(x = \sqrt 2 \) ta được mệnh đề  là một mệnh đề đúng.

+) \(x = 0\) ta được mệnh đề  là một mệnh đề sai.

b)

+) \(x = 0\) ta được mệnh đề  là một mệnh đề đúng.

+) Không có giá trị của x để  là một mệnh đề sai do \({x^2} + 1 > 0\) với mọi x.

c)  chia hết cho 3” (n là số tự nhiên).

+) \(n = 1\) ta được mệnh đề  chia hết cho 3” là một mệnh đề đúng.

+) \(n = 5\)ta được mệnh đề  chia hết cho 3” là một mệnh đề sai.

AH
Akai Haruma
Giáo viên
20 tháng 9 2023

Lời giải:
$n^3-n=n(n^2-1)=n(n-1)(n+1)$ là tích của 3 số nguyên liên tiếp nên luôn chia hết cho $3$

Do đó mệnh đề $P$ đúng.

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Ta chưa thể khẳng định được tính đúng sai của câu “n chia hết cho 3” do chưa có giá trị cụ thể của n.

b) Với n = 21 thì câu ”21 chia hết cho 3” là mệnh đề toán học. Mệnh đề này đúng.

c) Với n = 10 thì câu ”10 chia hết cho 3” là mệnh đề toán học. Mệnh đề này sai.

19 tháng 11 2019

A: “∀ n ∈ N: n chia hết cho n”

A : “∃ n ∈ N: n không chia hết cho n”.

A đúng vì với n = 0 thì n không chia hết cho n.

13 tháng 4 2016

a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.

b)  ∃x ∈ Q: x2=2;= “Bình phương của một số hữu tỉ là một số khác 2”. Mệnh đề đúng.

c) ∀x ∈ R: x< x+1; = ∃x ∈ R: x≥x+1= “Tồn tại số thực x không nhỏ hơn số ấy cộng với 1”. Mệnh đề này sai.

d)  ∃x ∈ R: 3x=x2+1; = ∀x ∈ R: 3x ≠ x2+1= “Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x”

Đây là mệnh đề sai

13 tháng 4 2016

a) Có một số tự nhiên n không chia hết cho chính nó. Mệnh đề này đúng vì n=0 ∈ N, 0 không chia hết cho 0.

b)  = "Bình phương của một số hữu tỉ là một số khác 2". Mệnh đề đúng.

c)  = ∃x ∈ R: x≥x+1= "Tồn tại số thực x không nhỏ hơn số ấy cộng với 1". Mệnh đề này sai.

d)  = ∀x ∈ R: 3x ≠ x2+1= "Tổng của 1 với bình phương của số thực x luôn luôn không bằng 3 lần số x"  

Đây là mệnh đề sai vì với x= ta có : 

=+1



Xem thêm tại: http://loigiaihay.com/bai-7-trang-10-sgk-dai-so-10-c45a4787.html#ixzz45gTdKfVY

ta thấy 1 số chính phương không bao giờ có đuôi là 2;3;7;8

Mà nếu mệnh đề (2) đúng thì n+8=...2 => mệnh đề (1) sai và n-1=...3 => mệnh đề (3) sai

Nhưng chỉ có 1 mệnh đề sai nên chỉ có mệnh đề (2) là thỏa mãn

Vậy n+8 và n+1 là số  chính phương

\(\Rightarrow\left(n+8\right)-\left(n-1\right)=9\)

\(\Leftrightarrow\left(n+8\right)^2-\left(n-1\right)^2=9^2\)

\(\Leftrightarrow\left[\left(n+8\right)-\left(n-1\right)\right]\left[\left(n+8\right)+\left(n-1\right)\right]=9^2\)

\(\Leftrightarrow9\left(2n+7\right)=9^2\)

\(\Leftrightarrow2n-7=9\)

\(\Leftrightarrow n=8\)

Vậy n=8 thì mới thỏa mãn mệnh đề (1) và (3)