Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Do mặt cầu S(O; r) tiếp xúc với mp (P) tại I nên: OI ⊥ (P) ⇒ OI ⊥ IA
Suy ra, AI là tiếp tuyến của mặt cầu đã cho tại điểm I.
Ta có AM và AI là hai tiếp tuyến cắt nhau tại A của mặt cầu nên:
AM = AI ( tính chất hai tiếp tuyến cắt nhau)
* Tương tự có BM = BI.
* Xét hai tam giác AMB và tam giác AIB có:
AM = AI
BM = BI
AB chung
Suy ra: ∆ AMB = ∆ AIB ( c.c.c)
a) Gọi (P) là mặt phẳng chứa hai đường thẳng đã cho. Mặt phẳng (P) cắt mặt cầu S(O;r) theo một đường tròn tâm I, là hình chiếu vuông góc của O lên mặt phẳng (P).
Xét hai tam giác MAD và MCB có góc chung nên hai tam giác đó đồng dạng.
Vì vậy: => MA.MB = MC.MD.
b) Đặt MO = d, ta có Oi vuông góc với (P) và ta có:
MO2= MI2 = OI2 và OA2 = OI2 + IA2
Hạ IH vuông góc AB, ta có H là trung điểm của AB.
Ta có MA = MH - HA; MB = MH + HB = MH + HA.
Nên MA.MB =
MH2 – HA2 = (MH2 + HI2) – (HA2 + IH2)
= MI2 – IA2 = ( MI2 + OI2) – (IA2 + OI2)
= MO2 – OẢ2
= d2 – r2
Vậy MA.MB = d2 – r2
Đáp án là A
* Gọi J là tâm mặt cầu qua đường tròn tâm O và điểm S => J nằm trên đường trung trực của AB và SA
*Tam giác SIA vuông tại I.
*Ta có: Góc N và S bằng nhau vì cùng phụ với góc S A N ^
* Tam giác AKN vuông tại K
* Tam giác OJN vuông tại O
* Tam giác AOJ vuông tại O
Cách 2
Gắn hệ trục toạ độ Oxy sao cho A, B, O thuộc tia Ox, S thuộc tia Oy và giả sử a = 1.
Khi đó A(1;0), B(3;0), S(0;2)
là đường tròn tâm J qua 3 điểm A, S, B
Suy ra:
Tam giác ADC vuông tại A nên AD 2 = DC 2 - AC 2 (1)
Tam giác ABC vuông tại A nên BC 2 = AC 2 + AB 2 (2)
Từ (1) và (2) ta suy ra AD 2 + BC 2 = DC 2 + AB 2 (3)
Ta lại có:
AC 2 = DC 2 - AD 2 và BD 2 = AD 2 + AB 2 (4)
DC 2 = 4 r 2 - h 2 , AB 2 = 4 h 2 (5)
Từ (4) và (5) ta có:
AC 2 + BD 2 = DC 2 + AB 2 = 4 r 2 - h 2 + 4 h 2 = 4 r 2 (6)
Từ (3) và (6) ta có: AD 2 + BC 2 = AC 2 + BD 2 (không đổi)
Theo tính chất của mặt cầu, ta có AI và AM là hai tiếp tuyến với cầu kẻ từ A, cho nên AI = AM, tương tự BI =BM. Từ đó hai tam giác ABI và ABM bằng nahau (c.c.c), cho nên các góc tương ứng bằng nhau, tức