K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2017

Đáp án A

Ký hiệu như hình vẽ. Đặt   A B = B C = C D = D A = a ; S O = h

Suy ra   S B = a 2 2 + h 2  

Gọi M là trung điểm của SB

Trong (SBD) kẻ trung trực của SB cắt SO tại I

Vậy I là tâm mặt cầu ngoại tiếp khối chóp S.ABCD. Suy ra I S = R .

Hai tam giác vuông SMISOB đồng dạng ⇒ S I S B = S M S O ⇒ R = a 2 + 2 h 2 4 h với  0 < h < 2 R .  Suy ra a 2 = 2 h 2 R − h .

Thể tích V của khối chóp là:

V = 1 3 a 2 h = 1 3 2 h 2 2 R − h = 8 3 h 2 h 2 2 R − h ≤ 8 3 h 2 + h 2 + 2 R − h 3 3 = 64 R 3 81

Vậy GTLN của V  bằng 64 R 3 81  đạt được khi   h 2 = 2 R − h ⇔ h = 4 R 3

Suy ra a = 4 R 3  .

 

16 tháng 7 2018

Đáp án A.

Kí hiệu như hình vẽ.

Ta thấy I K = r '  là bán kính đáy của hình chóp, A I = h  là chiều cao của hình chóp.

Tam giác  vuông tại KIK là đường cao

⇒ I K 2 = A I . I M ⇒ r ' 2 = h . 2 r − h

Ta có V c o h p = 1 3 . π r ' 2 . h = 1 3 . π . h . h . 2 r − h = 4 3 π . h 2 . h 2 2 r − h .

Áp dụng bất đẳng thức Cauchy ta có  

h 2 . h 2 . 2 r − h ≤ h 2 + h 2 + 2 r − h 3 27 = 8 r 3 27

⇔ V c h o p ≤ 4 3 π . 8 r 3 27 = 32 81 . π r 3

Dấu bằng xảy ra khi h 2 = 2 r − h ⇔ h = 4 r 3   . Vậy ta chọn A

1 tháng 7 2017

21 tháng 3 2017

Đáp án C

22 tháng 11 2017

Đáp án A

Vì hình trụ nội tiếp trong mặt cầu bán kính R cố định

⇒ R 2 = r 2 + h 2 2 = r 2 + h 2 4 ≥ 2 r 2 × h 2 4 = r h ⇒ r h = R 2  

Diện tích xung quanh của hình trụ là: S x q = 2 πrh ≤ 2 πR 2  

Dấu “=” xảy ra khi  r 2 + h 2 4 = R 2 r 2 = h 2 4 ⇒ h = R 2 .

11 tháng 10 2018

Chọn C.

Phương pháp: Dựa vào dữ kiện bài toán lập hàm số và tìm giá trị lớn nhất, nhỏ nhất.

17 tháng 7 2019

25 tháng 2 2019

Chọn đáp án D.

14 tháng 4 2017

Đáp án C

Gọi r và h tương ứng là bán kính đáy và chiều cao của khối trụ

Ta có

7 tháng 8 2019

Đáp án A

Vì hình trụ nội tiếp hình cầu S ⇒ R 2 = r 2 + h 2 2 ⇔ 4 r 2 + h 2 = 4 R 2  

Diện tích xung quanh của hình trụ là S x q = 2 π r h = π .2 r . h ≤ π 2 r 2 + h 2 2 = π 4 r 2 + h 2 2 = 2 π R 2  

Dấu “=” xảy ra khi và chỉ khi  2 r = h ⇒ 2 h 2 = 4 R 2 ⇔ h 2 = 2 R 2 ⇔ h = R 2