K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2022

gfvfvfvfvfvfvfv555

21 tháng 12 2016

\(m=4a^2b^2-\left(a^2+b^2-c^2\right)^2=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left(\left(a+b\right)^2-c^2\right)\left(c^2-\left(a-b\right)^2\right)\)

\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)

Vì a, b, c là 3 cạnh của tam giác nên tổng của 2 cạnh luôn lớn hơn 1 cạnh và 3 cạnh đều dương

Nên \(\Rightarrow m>0\)

21 tháng 12 2016

M=4a2b2-(a2+b2-c2)2

=(2ab)2-(a2+b2-c2)2

=(2ab-a2-b2+c2)(2ab+a2+b2-c2)

=(c2-a2+2ab-b2)(a2+2ab+b2-c2)

=[c2-(a2-2ab+b2)][(a2+2ab+b2)-c2]

=[c2-(a-b)2][(a+b)2-c2]

=(c-a+b)(c+a-b)(a+b-c)(a+b+c)

11 tháng 9 2019

=(a2)2-[b(2a-b)]2

=(a2-b(2a-b))(a2+b(2a-b))

=(a2-2ab+b2)(a2+2ab-b2)

=(a-b)2(a2+2ab-b2)

11 tháng 9 2019

b2 bạn chuyển ntn mà ra đc -(b(2a-b))2

20 tháng 7 2018

Luôn xảy ra do 3 cạnh tam giác luôn > 0

13 tháng 12 2018

Đặt \(x^2+3x+1=t\)

\(\left(x^2+3x+1\right)\left(x^2+3x-3\right)-5\)

\(=t\left(t-4\right)-5\)

\(=t^2-4t-5\)

tự làm nốt ý này nhé.

những ý kia lát nx mình làm.

13 tháng 12 2018

d) \(x^4+5x^2+9\).Đặt \(x^2=t\) thì:

\(x^4+5x^2+9=t^2+5t+9\)

Làm nốt ý này nhé bạn! Ý kia chút nữa rảnh làm!

13 tháng 11 2015

1.để Ak xđịnh thì x2+x-12=0

                   <=>x2+4x-3x-12=0

                   <=>x(x+4)-3(x+4)=0

                   <=>(x+4)(x-3)=0 <=> x=-4 hoặc x=3

Vậy để A k xđịnh <=> x=-4 hoặc x=3

**** cho mìk vs nha bạn

 

19 tháng 8 2016

Bài 1 :

\(x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2+y\right)\left(x+2-y\right)\)

Bài 2 : Ta có : \(a+b+c=0\)

\(\Rightarrow a+b=-c\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3-3abc=-c^3\) ( Vì \(a+b=-c\) )

\(\Rightarrow a^3+b^3+c^3=3abc\)

19 tháng 8 2016

Bài 1:

x2 +4x-y2+4

=(x2+4x+4)-y2

=(x+2)2-y2

=(x-y+2)(x+y+2)

Bài 2:

 a3+b3+c3 =  3abc

=>a3+b3+c3-3abc=0

=>[(a+b)3+c3]-3ab(a+b)-3abc=0

=>(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=0

=>(a+b+c)(a2+b2+c2-ac-bc-ab)=0

Từ a+b+c=0

=>0*(a2+b2+c2-ac-bc-ab)=0 (luôn đúng)