Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, - A = 31 + 32 + 33 + ... + 3120
= (31+32) + (33+34) + ... + (3119+3120)
= (3+32) + 32(3+32) + ... + 3118(3+32)
= 12 + 32.12 + ... + 3118.12
= 12(1+32+34+...+3118) ⋮ 12 ⋮ 4
- A = 31 + 32 + 33 + ... + 3120
= (31+32+33) + (34+35+36) + ...+ (3118+3119+3120)
= (31+32+33) + 33(31+32+33) + ... + 3117(31+32+33)
= 39 + 33.39 + ... + 3117.39
= 39(1+33+36+...+3117) ⋮ 39 ⋮ 13
- Vì A chia hết cho 13 và 4. Mà ƯCLN(4,13) = 1 nên A chia hết cho (4.13) = 82
b,
Nhận thấy:
34n+1 = ...3 (theo quy tắc về chữ số tận cùng của một luỹ thừa, lên Youtube coi video của cô Huyền OLM)
=> 34n+2 = ...3.3 = ...9
34n+3 = ...9.3 = ...27 = ...7
34n = ...3: 3 = ...1
Mà 120: 4 = 30 (4 là số số luỹ thừa đc lặp lại)
=> A = (...3+...9+...7+...1).30 = ...0
Vậy CSTC của A là 0
c,
A = 31 + 32 + 33 + ... + 3120
=> 3A = 32 + 33 + 34 + ... + 3121
=> 3A - A = (32 + 33 + 34 + ... + 3121) - (31 + 32 + 33 + ... + 3120)
=> 2A = 3121 - 3
=> 2A + 3 = 3121
Vậy 2A + 3 là luỹ thừa của 3
P/s: Không phải 2A - 3
\(M=3+3^2+3^3+3^4+...+3^{100}\)
\(\Rightarrow M=\left(3+3^2+3^3+3^4\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(\Rightarrow M=\left(3+9+27+81\right)+...+3^{96}.\left(3+3^2+3^3+3^4\right)\)
\(\Rightarrow M=120+...+3^{96}.120\)
\(\Rightarrow M=\left(1+...+3^{96}\right).120⋮120\)
\(\Rightarrow M⋮120\left(đpcm\right)\)
M=1+3+3^2+3^3+^3+...+3^118+3^119
=(1+3+3^2)+(3^3+3^4+3^5)+...+(3^117+3^118+3^119)
=13+3^3(1+3+3^2)+...+3^117(1+3+3^2)
=13+3^3.13+..+3^117.13
=13(1+3^3+...+3^117) chia hết cho 13
Vậy Mchia hết cho 13
ai chơi truy kích thì kết bạn vs mình nha
rồi khi nào tạo phòng solo đao phong chibi với nhau 1 ván
dễ mà bạn bạn cứ nhóm 3số đầu tiên vào roi cu tiep tuc 3 so nhu vay
se duoc : (1+3+3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
=(1+3+3^2)+3^3.(1+3+3^2)+...+3 ^98.(1+3+3^2)
=13.3^3.13+...+3^98.13=13.(1+3^3+...+3^98) chia hết cho 13
vậy M chia hết cho 13
tick cho mình nhé!
M=1+3+3^2+3^3+...+3^98+3^99+3^100
M=(1+3+ 3^2)+(3^3+3^4+3^5)+...+(3^98+3^99+3^100)
M=(1+3+3^2)+3^3x(1+3+3^2)+...+3^98x(1+3+3^2)
M=13x3^3x13+...+3^98x13
=> 13x(1+3+3^3+...+3^98)chia hết cho 13
Vậy M chia hết cho 13
HT
*Sửa đề*
M = 1 + 3 + 32 +....+ 3100
M = ( 1 + 3 + 32) + (33 + 34 + 35) + ... + (398 + 399 + 3100)
M = (1 + 3 + 32) + 33(1 + 3 + 32) + .... + 398.(1 + 3 + 32)
M = 13 . 1 + 13 . 33+ ...... + 13 . 398
M = 13 . ( 1 + 33 +....+ 398)
=> M chia hết cho 13
\(B=3+3^2+3^3+....+3^{120}\)
a, Ta thấy : Cách số hạng của B đều chi hết cho 3
\(B=3+3^2+3^3+....+3^{120}⋮3\)
\(b,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)
\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(B=3.4+3^3.4+...+3^{119}.4\)
\(B=4\left(3+3^3+...+3^{199}\right)\)
Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)
\(\Rightarrow B⋮4\)
\(c,B=3+3^2+3^3+....+3^{120}\)
\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)
\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)
\(B=13+3^2.13+...+3^{118}.13\)
\(B=13\left(3^2+3^4+...+3^{118}\right)\)
Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)
\(\Rightarrow B⋮13\)
M=3+32+33+...+3120
=(3+32+33)+(34+35+36)+...+(3118+3119+3120)
=3(1+3+9)+...+3118(1+3+9)
=13(3+34+...+3118) chia hết cho 13
=>Mchia hết cho 13
M=3+32+33+...+3120
=3(1+3+9)+...+3118(1+3+9)
=13(3+34+...+3118) chia hết cho 13
Không chắc chắn lắm