Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Ta có:
3A = 3^2 + 3^3+3^4+...+3^101
=> 3A-A= (3^2+3^3+3^4+...+3^101) - (3+3^2+3^3+...+3^100)
<=> 2A= 3^101-3
=> 2A +3 = 3^101
Mà 2A+3=3^n
=> 3^101 = 3^n => n=101
2. M=3+32+33+34+...+3100
=>3M=32+33+34+35+...+3101
=>3M-M= 3101-3 ( chỗ này bạn tự làm được nhé)
=> M=\(\frac{3^{101}-3}{2}\)
a) Ta co : 3101=(34)25 .3=8125.3
Bạn học đồng dư thức rồi thì xem:
Vì 81 đồng dư với 1 (mod 8) => 8125 đồng dư với 1 (mod 8)=> 8125.3 đồng dư với 1.3=3(mod 8)
=> 8125.3-3 đồng dư với 3-3=0 (mod 8)=> 8125.3-3 chia hết cho 8
=>\(\frac{81^{25}.3-3}{2}\)chia hết cho 4=> M chia hết cho 4 (1)
Ma M=3101-3 chia hết cho 3 (2)
Từ (1) và (2) => M chia hết cho 12
b)\(2\left(\frac{3^{101}-3}{2}\right)+3=3^n\)
=> 3101-3 +3 =3n
=> 3101=3n=> n = 101
a , Ta có :
M = 3 + 32 + ... + 3100
= 3 . ( 1 + 3 ) + ... + 399 . ( 1 + 3 )
= 3 . 4 + ...... + 399 . 4
= 4 . ( 3 + ... + 399 ) \(⋮\)4
a , M = 3 + 32 + ... + 3100
= 1 . ( 3 + 32 ) + ... + 398 . ( 3 + 32 )
= 1 . 12 + ... + 398 . 12
= 12 . ( 1 + ... + 398 ) \(⋮\)12
a) Đặt biểu thức trên là A, ta có:
A = 21 + 22 + 23 + 24 + ... + 299 + 2100
=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)
=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)
=> A = 21.3 + 23.3 + ... + 299.3
=> A = 3(21 + 23 + ... + 299)
=> A ⋮ 3
\(26=13.2\)
\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)
\(s=3.13+3^413+.....+3^{2012}.13\)
\(s=13.\left(3+3^4+....+3^{2012}\right)\)
\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)
\(s=3.4+3^3.4+....+3^{2015}.4\)
\(s=4.\left(3+3^3+.....+3^{2015}\right)\)
\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)
\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)
\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)
a, \(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{99}+3^{100}\right)\)
\(=\left[3\left(1+3\right)\right]+\left[3^3\left(1+3\right)\right]+...+\left[3^{99}\left(1+3\right)\right]\)
\(=3\cdot4+3^3\cdot4+....+3^{99}\cdot4\)
\(=4\left(3+3^3+...+3^{99}\right)\)
\(\Rightarrow B⋮4\)
b, Vì 3 chia hết cho 3
32 chia hết cho 3
.
.
.
3100 chia hết cho 3
\(\Rightarrow B⋮3\)
c,\(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)
\(=\left(3+3^2\right)+\left(3^3+2^4\right)+....+\left(3^{99}+3^{100}\right)\)
\(=12+\left[3^2\left(3+3^2\right)\right]+....+\left[3^{97}\left(3+3^2\right)\right]\)
\(=12+3^2\cdot12+....+3^{97}\cdot12\)
\(=12\left(1+3^2+...+3^{97}\right)\)
\(\Rightarrow B⋮12\)
2)
a)Ta có: 2m+5=n.(m-1)
=> 2m+5=nm-n
=>2m+5-nm+n=0
=>(2-n).m+5+n=0
=>(2-n).m-(2-n)+5+2=0
=>(2-n).(m-1)+7=0
=>(2-n).(m-1)=-7=-1.7=-7.1
Ta có bảng sau:
2-n | 1 | -7 | -1 | 7 |
n | 1 | 9 | 3 | -5 |
m-1 | -7 | 1 | 7 | -1 |
m | -6 | 2 | 8 | 0 |
Vậy (n,m)=(1,-6),(9,2),(3,8),(-5,0)
b, Theo đề bài ta có : 3n + 2 \(⋮\)2n - 3
\(\Rightarrow\) 2 x ( 3n + 2 ) \(⋮\) 2n - 3
\(\Rightarrow\) 6n + 4 \(⋮\)2n - 3
\(\Rightarrow\)6n - 9 + 13 \(⋮\)2n - 3
\(\Rightarrow\)3 x ( 2n - 3 ) +13 \(⋮\)2n - 3
Vì 3 x ( 2n - 3 ) \(⋮\)2n - 3 \(\Rightarrow\)13 \(⋮\)2n - 3
\(\Rightarrow\)2n - 3 \(\in\)Ư( 13 )
\(\Rightarrow\)2n - 3 \(\in\){ 13 ; -13 }
Nếu 2n -3 = 13
2n = 16
n = 8
Nếu 2n - 3 = -13
2n = -10
n = -5
Vậy n = 8 hoặc n = -5
Ta có
M=3 +32+33+....+399+3100
=> \(.M=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\)
=> \(M=12\left(1\right)+12\left(9\right)+...+12\left(...\right)\)
=> M chia hết cho 12 ( cái cuối bạn tự tính đi mình ko muốn tính :) )
cái còn lại tự làm tương tự thôi