Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: a) \(M=1+5+5^2+...+5^{100}\)
\(5M=5+5^2+5^3+...+5^{101}\)
\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-1\)
\(M=\frac{5^{101}-1}{4}\)
b) \(N=2+2^2+...+2^{100}\)
\(2N=2^2+2^3+...+2^{101}\)
\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(N=2^{101}-2\)
Bài 2:
a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\)
\(32^{16}=\left(2^5\right)^{16}=2^{80}\)
Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)
3\(^4\)>\(^{4^3}\)
[100-99]\(^{2000}\)>[100+99]\(^0\)( vì theo dạng tổng quát ta có :a\(0\)=1 nên sẽ có điều như tớ làm nhé@@@@@@@@@)
A)Ta co:3^4=81
4^3=64
Vi 64<81
=>3^4>4^3
B)Ta co:(100-99)^2000=1^2000=1
(100+99)^0=199^0=1
Vì:1=1
=>(100-99)^2000=(100+99)^0
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
a) Có A=\(1+3+3^2+3^3+....+3^{100}\)
\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)
Bài b/c/d : bn cứ lm tương tự.
A=4+42+43+...+4100
4A=4.(4+42+43+...+4100)
4A=4.4+4.42+...+4.499+4.4100
4A= 42+...+4100+4101
- A=4+42+...+4100
= 3A=4101-4
3A=4100+1-4
3A=4100.4-4
3A=(42)50.4-4
3A=1650.4-4
3A=.......6.4-4
3A=.......4-4
3A=.......0
A=.......0:3
A=.......0
Vậy A : 5 dư 0.
Tick cho mình nếu đúng nha bạn!
S=4+42+43+44+...+499
4S=42+43+44+...+499+4100
4S-S=4100-1
3S=4100-1
S=(4100-1):3 < 6.498
vậy S < 6.498
M=1+2+22+23+...+299.
=> 2M = M= 2+2^2+2^3+...+2^99 + 2^100=>2M= M=2+22+23+...+299+2100
=> M = 2M-M = 2+2^2+2^3+...+2^99 + 2^100 - (1+2+2^2+2^3+...+2^99)=>M=2M−M= 2+22+23+...+299+2100−(1+2+22+23+...+299)
<=> M = 2^100-1 <2^100<=>M=2100−1<2100
<=>Vậy M<2^100
a)4^50=(2^2)^50=2^100
Vậy 2^100=4^50
b) 4^3x5^3=(4x5)^3=20^3
Vì 20^3>19^3 nên 4^3x5^3>19^3
Tìm x:
3^2x4^2:(x-2)=12
(3x4)^2:(x-2)=12
12^2:(x-2)-12
x-2=12^2:12
x-2=12
x=12+2
x=14