Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ 3A=3^2+3^3+3^4+......+3^2017
3A-A=3^2017-3
A=(3^2017-3)/2
CHẮC CHẮN MÌNH ĐÃ HỎI CÁC THẦY CÔ RỒI
CHẮC CHẮN 100%
Ta xét theo quy luật:
(_3)4n = _1 ; (_3)4n+1 = _3; (_3)4n+2 = _9; (_3)4n+3 = _7 ;
(_7)4n = _1 ; (_7)4n+1 = _7; (_3)4n+2 = _9; (_3)4n+3 = _3 .
Ta thấy 2009 = 502 x 4 + 1 nên 32009 có tận cùng là 3.
2010 = 502 x 4 + 2 nên 72010 có tận cùng là 9.
2011 = 502 x 4 + 3 nên 132011 có tận cùng là 7.
Vậy M có chữ số tận cùng giống với chữ số tận cùng của tích : 3 x 9 x 7 = 189.
Tóm lại M có chữ số tận cùng là 9.
Bài này làm từng câu thôi :
\(A=1+3^1+3^2+.......+3^{2014}+3^{2015}\)
\(\Rightarrow3A=3+3^2+3^3+......+3^{2015}+3^{2016}\)
\(\Rightarrow3A-A=\left(3+3^2+......+3^{2016}\right)-\left(1+3^1+.....+3^{2015}\right)\)
\(\Rightarrow2A=3^{2016}-1\)
\(\Rightarrow A=\frac{3^{2016}-1}{2}\)
Câu 2a đánh thiếu đề rồi : I x+1I + I x+2I + I x+3 I = x
2c)
Ta có: \(25-y^2\le25\Rightarrow8\left(x-2012\right)^2\le25\)
\(\Rightarrow\left(x-2012\right)^2\le3\)
\(\Rightarrow\left[\begin{matrix}\left(x-2012\right)^2=0\\\left(x-2012\right)^2=1\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x-2012=0\\\left[\begin{matrix}x-2012=1\\x-2012=-1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=2012\\\left[\begin{matrix}x=2013\\x=2011\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[\begin{matrix}y=5\\\left[\begin{matrix}y=\sqrt{17}\\y=\sqrt{17}\end{matrix}\right.\end{matrix}\right.\)(loại)
Vậy x=2012,y=5
a, 3A=3^2+3^3+3^4+...+3^2016+3^2017
2A=3A-A=3^2017-3
A=3^2017-3/2
a.
A=3+32+33+...+32015+32016
3A = 32+33+...+32016+32017
3A - A = (32+33+...+32016+32017 ) - (3+32+33+...+32015+32016 )
2A = 32017 - 3
A = \(\frac{\text{ }3^{2017}-3}{2}\) \(\frac{\text{3^{2017} - 3}}{2}\)
B= 3+32+33+34+35+....+32009
=>3B=32+33+34+35+....+32010
=>3B-B=32+33+34+35+....+32010-3-32-33-34-35-...-32009
=>2B=32010-3
=>B=3^2010−3/2
có tận cùng là 23
(lỗi, ->tiếp)
\(3^{20}\) có 2 chữ số tận cùng là 01 => \(\left(3^{20}\right)^{100}=3^{2000}\)có 2 chữ số tận cùng là 01
Mà \(3^{10}=59049\) có 2 chữ số tận cùng là 49
Suy ra \(3^{2010}=3^{2000}.3^{10}\) có 2 chữ số tận cùng là 49.
=> \(3^{2010}-3\)có tận cùng là 49 - 3 =46
=> \(\frac{3^{2010}-3}{2}\)có tận cùng là 23
Đáp số: 23
B = 3 + 32 + 33 + 34 + ... + 32009
=> 3B = 32 + 33 + 34 + 35 + .... + 32010
Lấy 3B trừ B theo vế ta có :
3B - B = (32 + 33 + 34 + 35 + .... + 32010) - (3 + 32 + 33 + 34 + ... + 32009)
2B = 32010 - 3
B = \(\frac{3^{2010}-3}{2}\)
Ta có 32010 - 3 = 32008.32 - 3
= 3502.4.9 - 3
= (34)502.9 - 3
= (....1)502.9 - 3
= ....9 - 3 = ...6
=> (32010 - 3) : 2 = ...6 : 2 = ...3
LƯU Ý
Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.
Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.
Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày
Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.
M = 1 + 3 + 3^2 + 3^3 + ... + 3^119
3M = 3 + 3^2 + 3^3 + 3^4 + ... + 3^120
3M - M = 3^120 - 1
2M = (3^4)^30 - 1
2M = (...1)^30 - 1
2M = (...1) - 1
2M = (...0)
=> M có tận cùng là 0 hoặc 5
Mà M là tổng của 120 số lẻ => M chẵn
=> M có tận cùng là 0