K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(M=\dfrac{x^2+x}{x^2-2x+1}:\left(\dfrac{x+1}{x}-\dfrac{1}{1-x}+\dfrac{2-x^2}{x^2-x}\right)\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}:\dfrac{x^2-1+x+2-x^2}{x\left(x-1\right)}\)

\(=\dfrac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\dfrac{x\left(x-1\right)}{x+1}\)

\(=\dfrac{x^2}{x-1}\)

b: Để M>1 thì M-1>0

\(\Leftrightarrow\dfrac{x^2-x+1}{x-1}>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

29 tháng 8 2021

a) ĐKXĐ: x # 0; x # 1; x# -1

M = (x^2)/(x-1)

20 tháng 7 2021

a. `M=(x+2)/(x\sqrtx-1)+(\sqrt2+1)/(x+\sqrtx+1)-1/(\sqrtx-1)`

`=(x+2)/( (\sqrtx)^3 -1^3))+(\sqrt2+1)/(x+\sqrtx+1)-1/(\sqrtx-1)`

`= (x+2)/((\sqrtx-1)(x+\sqrtx+1)) + +(\sqrt2+1)/(x+\sqrtx+1)-1/(\sqrtx-1)`

`= ((x+2) +(\sqrt2+1)(\sqrtx-1)-(x+\sqrtx+1))/((\sqrtx-1)(x+\sqrtx+1))`

`=( \sqrt2 (\sqrtx-1))/((\sqrtx-1)(x+\sqrtx+1))`

`= (\sqrt2)/(x+\sqrtx+1)`

b. `x=9 => M=\sqrt2/(9+\sqrt9+1)=\sqrt2/13`

a) Ta có: \(M=\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\)

b) Thay x=9 vào M, ta được:

\(M=\dfrac{3}{9+3+1}=\dfrac{3}{13}\)

4 tháng 7 2021

\(1.\\ A=\sqrt{\left(2+\sqrt{3}\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\\ =\left|2+\sqrt{3}\right|+\left|2-\sqrt{3}\right|\\ =2+\sqrt{3}+2-\sqrt{3}=4\)

\(2.\\a.\\ P=3x-\sqrt{\left(x-5\right)^2}=3x-\left|x-5\right|\\ b.\\ x=2\Rightarrow P=3\)

\(3.\\ M=\dfrac{\sqrt{\left(x-1\right)^2}}{x-1}=\dfrac{\left|x-1\right|}{x-1}\)

\(\cdot x>1\Rightarrow M=1\\ \cdot x=1\Rightarrow M=0\\\cdot x< 1\Rightarrow M=-1\)

4 tháng 7 2021

B1.

Ta có:A\(=\sqrt{3+4\sqrt{3}+4}+\sqrt{3-4\sqrt{3}+4}\)

            \(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(\sqrt{3}-2\right)^2}\)

           \(=\sqrt{3}+2+\sqrt{3}-2=2\sqrt{3}\)