K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

a. Để M là ps thì :

\(\frac{5}{n-3}\ne0\)

\(\Rightarrow n-3\ne0\)

\(\Rightarrow n\ne3\)

3 tháng 5 2019

b. Để \(M\in Z\)thì \(n\in Z\)

\(\Rightarrow n-3\inƯ\left(5\right)\)

\(\Rightarrow n-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow n\in\left\{-2;2;4;8\right\}\)

11 tháng 4 2020

Cho biểu thức \(B=\frac{4}{n-3}\)

Để \(\frac{4}{n-3}\)là phân số => \(n-3\inℤ\)

=> \(n\inℤ\)

b) n = -2

Thay n = -2 vào B ta được : \(B=\frac{4}{n-3}=\frac{4}{-2-3}=\frac{4}{-5}=\frac{-4}{5}\)

n = 0

Thay n = 0 vào B ta được : \(B=\frac{4}{n-3}=\frac{4}{0-3}=\frac{4}{-3}=\frac{-4}{3}\)

n = 10

Thay n = 10 vào B ta được : \(B=\frac{4}{n-3}=\frac{4}{10-3}=\frac{4}{7}\)

c) Để B có giá trị nguyên

=> \(4⋮n-3\)

=> \(n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Ta có bảng sau

n-31-12-24-4
n42517-1

Vậy \(n\in\left\{\pm1;2;4;5;7\right\}\)thì B có giá trị nguyên

11 tháng 4 2020

a) Để B  là phân số thì số nguyên phải là số khác 0 là ko thuộc Ư(4)

                                                                                         MẤY CON KIA TỪ TỪ MK LM NỐT , NHỚ K CHO MK NHÉ

4 tháng 7 2019

a) Ta có:

Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4

b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)

+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)

c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)

Để A \(\in\)Z <=> 1 \(⋮\)n + 4

      <=> n + 4 \(\in\)Ư(1) = {1; -1}

Lập bảng :

n + 41 -1
   n-3 -5

Vậy ....

4 tháng 7 2019

1a) Để A là phân số thì n \(\ne\)- 4 ; n 

b) + Khi n = 1 

=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)

+ Khi n = -1 

=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)

 c) Để \(A\inℤ\)

=> \(n+5⋮n+4\)

=> \(n+4+1⋮n+4\)

Ta có : Vì \(n+4⋮n+4\)

=> \(1⋮n+4\)

=> \(n+4\inƯ\left(1\right)\)

=> \(n+4\in\left\{\pm1\right\}\)

Lập bảng xét các trường hợp

\(n+4\)\(1\)\(-1\)
\(n\)\(-3\)\(-5\)

Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)

13 tháng 3 2022

\(M=\frac{n+4}{n+1}\)

a)\(ĐK:n\ne-1\)

b)\(n=0\)

Thay n=0 vào M ta được:

\(M=\frac{0+4}{0+1}=4\)

   \(n=3\)

Thay n=3 vào M ta được:

\(M=\frac{3+4}{3+1}=\frac{7}{4}\)

   \(n=-7\)

Thay n=-7 vào M ta được:

\(M=\frac{-7+4}{-7+1}=\frac{-3}{-6}=\frac{1}{2}\)

c)\(M=\frac{n+4}{n+1}=\frac{\left(n+1\right)+3}{n+1}=1+\frac{3}{n+1}\)

Để M nguyên thì \(1+\frac{3}{n+1}\)nguyên 

Mà \(1\in Z\)nên để \(1+\frac{3}{n+1}\)nguyên thì \(\frac{3}{n+1}\)nguyên

Để \(\frac{3}{n+1}\)nguyên thì \(3⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(3\right)\)

\(\Leftrightarrow n+1\in\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow n\in\left\{-4;-2;0;2\right\}\)(Đều thỏa mãn ĐK)

Vậy....

13 tháng 3 2022

a, đk x khác -1 

b, Với n = 0 => 0+4/0+1 = 4 

Với n = 3 => \(\dfrac{3+4}{3+1}=\dfrac{7}{4}\)

Với n = -7 => \(\dfrac{-7+4}{-7+1}=-\dfrac{3}{-6}=\dfrac{1}{2}\)

c, \(\dfrac{n+4}{n+1}=\dfrac{n+1+3}{n+1}=1+\dfrac{3}{n+1}\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

n+11-13-3
n0-22-4

 

5 tháng 7 2019

a) Ta có: Để M là phân số <=> -n + 2 \(\ne\)0 <=> -n \(\ne\)-2 <=> n \(\ne\)2

b) Ta có :

+) n = 6 => M = \(\frac{-2}{-6+2}=\frac{-2}{-4}=\frac{1}{2}\)

+) n = 7 => M = \(\frac{-2}{-7+2}=\frac{-2}{-5}=\frac{2}{5}\)

+) n = -3 => M = \(\frac{-2}{-\left(-3\right)+2}=-\frac{2}{5}\)

c) Để M \(\in\)Z <=> -2 \(⋮\)-n + 2

<=> -n + 2 \(\in\)Ư(-2) = {1; -1; 2; -2}

Với: +)-n + 2 = 1 => -n = -1 => n = 1

+) -n + 2 = -1 => -n = -3 => n = 3

+) -n + 2 = 2 => -n = 0 => n= 0

+) -n + 2 = -2 => -n = -4 => n=  4

Vậy ...

5 tháng 7 2019

#)Giải :

a) Để M là phân số 

\(\Rightarrow-n+2\ne0\)

\(\Rightarrow n\ne-2\)

b)Thay n = 6 vào M, ta có :

\(M=\frac{-2}{-6+2}=\frac{-2}{-4}=\frac{2}{4}=\frac{1}{2}\)

Thay n = 7 vào M, ta có :

\(M=\frac{-2}{-7+2}=\frac{-2}{-5}=\frac{2}{5}\)

Thay n = - 3 vào M, ta có :

\(M=\frac{-2}{-\left(-3\right)+2}=\frac{-2}{3+2}=\frac{-2}{5}\)

c)Để M nhận giá trị nguyên 

\(\Rightarrow-2⋮-n+2\)

\(\Rightarrow-n+2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)

Nếu \(-n+2=-2\Rightarrow n=4\)

Nếu \(-n+2=-1\Rightarrow n=3\)

Nếu \(-n+2=1\Rightarrow n=1\)

Nếu \(-n+2=2\Rightarrow n=0\)

Vậy với \(n\in\left\{4;3;1;0\right\}\)thì M nhận giá trị nguyên

a) Với \(n\in Z\)thì để \(\frac{5}{n-4}\)có giá trị là số nguyên

\(\Rightarrow5⋮n-4\)

\(\Rightarrow n-4\)là ước của \(5\)

Mà các ước của \(5\) là : \(5;1;-1;-5\)

Ta có bảng sau :

   \(n-4\)\(5\)\(1\)\(-1\)\(-5\)
   \(n\)\(9\)\(5\) \(3\)\(\)\(-1\)
\(KL\)\(TM\)\(TM\)\(TM\)\(TM\)

Vậy \(n\in\left\{9;5;3;-1\right\}\)thì \(\frac{5}{n-4}\)có giá trị là số nguyên.

b) Với \(n=5\)

\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{5-4}=5\)

Với \(n=-1\)

\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{\left(-1\right)-4}=-1\)

31 tháng 3 2021

\(M=\frac{6}{n-3}\)

a) Để M không là phân số

\(\Rightarrow n-3=0\)

\(\Rightarrow n=3\)

b) Để M là phân số và có giá trị nguyên

\(\Rightarrow n\ne3\)và \(6⋮n-3\)

\(6⋮n-3\)

\(n-3\in\left\{\pm6;\pm3;\pm2;\pm1\right\}\)

\(\Rightarrow n\in\left\{9;6;5;4;2;1;0;-3\right\}\)

31 tháng 3 2021

a)Để \(M=\frac{-6}{n-3}\)không phải là p/s thì n-3 = 0 => n=3 

Vậy nếu n=3 thì \(M=\frac{-6}{n-3}\)không phải là phân số.

b) Để \(M=\frac{-6}{n-3}\)là phân số thì \(n\ne3\), \(n\in Z\)và \(-6⋮n-3\)

\(-6⋮n-3\Leftrightarrow n-3\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

Lập bảng 

n-31-12-23-36-6
n4351609-3

Vậy nếu \(n\in\left\{0;1;\pm3;4;5;6;9\right\}\),\(n\in Z\)Và \(n\ne3\)thì \(M=\frac{-6}{n-3}\)là phân số và có gtrị nguyên