Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho biểu thức \(B=\frac{4}{n-3}\)
Để \(\frac{4}{n-3}\)là phân số => \(n-3\inℤ\)
=> \(n\inℤ\)
b) n = -2
Thay n = -2 vào B ta được : \(B=\frac{4}{n-3}=\frac{4}{-2-3}=\frac{4}{-5}=\frac{-4}{5}\)
n = 0
Thay n = 0 vào B ta được : \(B=\frac{4}{n-3}=\frac{4}{0-3}=\frac{4}{-3}=\frac{-4}{3}\)
n = 10
Thay n = 10 vào B ta được : \(B=\frac{4}{n-3}=\frac{4}{10-3}=\frac{4}{7}\)
c) Để B có giá trị nguyên
=> \(4⋮n-3\)
=> \(n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng sau
n-3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | 4 | 2 | 5 | 1 | 7 | -1 |
Vậy \(n\in\left\{\pm1;2;4;5;7\right\}\)thì B có giá trị nguyên
a) Để B là phân số thì số nguyên phải là số khác 0 là ko thuộc Ư(4)
MẤY CON KIA TỪ TỪ MK LM NỐT , NHỚ K CHO MK NHÉ
a) Ta có:
Để A là phân số <=> n + 4 \(\ne\)0 <=> n \(\ne\)-4
b) Với : + )n = 1 => \(A=\frac{1+5}{1+4}=\frac{6}{5}\)
+) n = -1 => \(A=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Ta có: \(A=\frac{n+5}{n+4}=\frac{\left(n+4\right)+1}{n+4}=1+\frac{1}{n+4}\)
Để A \(\in\)Z <=> 1 \(⋮\)n + 4
<=> n + 4 \(\in\)Ư(1) = {1; -1}
Lập bảng :
n + 4 | 1 | -1 |
n | -3 | -5 |
Vậy ....
1a) Để A là phân số thì n \(\ne\)- 4 ; n
b) + Khi n = 1
=> \(A=\frac{n+5}{n+4}=\frac{1+5}{1+4}=\frac{6}{5}\)
+ Khi n = -1
=> \(A=\frac{n+5}{n+4}=\frac{-1+5}{-1+4}=\frac{4}{3}\)
c) Để \(A\inℤ\)
=> \(n+5⋮n+4\)
=> \(n+4+1⋮n+4\)
Ta có : Vì \(n+4⋮n+4\)
=> \(1⋮n+4\)
=> \(n+4\inƯ\left(1\right)\)
=> \(n+4\in\left\{\pm1\right\}\)
Lập bảng xét các trường hợp
\(n+4\) | \(1\) | \(-1\) |
\(n\) | \(-3\) | \(-5\) |
Vậy \(A\inℤ\Leftrightarrow n\in\left\{-3;-5\right\}\)
\(M=\frac{n+4}{n+1}\)
a)\(ĐK:n\ne-1\)
b)\(n=0\)
Thay n=0 vào M ta được:
\(M=\frac{0+4}{0+1}=4\)
\(n=3\)
Thay n=3 vào M ta được:
\(M=\frac{3+4}{3+1}=\frac{7}{4}\)
\(n=-7\)
Thay n=-7 vào M ta được:
\(M=\frac{-7+4}{-7+1}=\frac{-3}{-6}=\frac{1}{2}\)
c)\(M=\frac{n+4}{n+1}=\frac{\left(n+1\right)+3}{n+1}=1+\frac{3}{n+1}\)
Để M nguyên thì \(1+\frac{3}{n+1}\)nguyên
Mà \(1\in Z\)nên để \(1+\frac{3}{n+1}\)nguyên thì \(\frac{3}{n+1}\)nguyên
Để \(\frac{3}{n+1}\)nguyên thì \(3⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(3\right)\)
\(\Leftrightarrow n+1\in\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow n\in\left\{-4;-2;0;2\right\}\)(Đều thỏa mãn ĐK)
Vậy....
a, đk x khác -1
b, Với n = 0 => 0+4/0+1 = 4
Với n = 3 => \(\dfrac{3+4}{3+1}=\dfrac{7}{4}\)
Với n = -7 => \(\dfrac{-7+4}{-7+1}=-\dfrac{3}{-6}=\dfrac{1}{2}\)
c, \(\dfrac{n+4}{n+1}=\dfrac{n+1+3}{n+1}=1+\dfrac{3}{n+1}\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
a) Ta có: Để M là phân số <=> -n + 2 \(\ne\)0 <=> -n \(\ne\)-2 <=> n \(\ne\)2
b) Ta có :
+) n = 6 => M = \(\frac{-2}{-6+2}=\frac{-2}{-4}=\frac{1}{2}\)
+) n = 7 => M = \(\frac{-2}{-7+2}=\frac{-2}{-5}=\frac{2}{5}\)
+) n = -3 => M = \(\frac{-2}{-\left(-3\right)+2}=-\frac{2}{5}\)
c) Để M \(\in\)Z <=> -2 \(⋮\)-n + 2
<=> -n + 2 \(\in\)Ư(-2) = {1; -1; 2; -2}
Với: +)-n + 2 = 1 => -n = -1 => n = 1
+) -n + 2 = -1 => -n = -3 => n = 3
+) -n + 2 = 2 => -n = 0 => n= 0
+) -n + 2 = -2 => -n = -4 => n= 4
Vậy ...
#)Giải :
a) Để M là phân số
\(\Rightarrow-n+2\ne0\)
\(\Rightarrow n\ne-2\)
b)Thay n = 6 vào M, ta có :
\(M=\frac{-2}{-6+2}=\frac{-2}{-4}=\frac{2}{4}=\frac{1}{2}\)
Thay n = 7 vào M, ta có :
\(M=\frac{-2}{-7+2}=\frac{-2}{-5}=\frac{2}{5}\)
Thay n = - 3 vào M, ta có :
\(M=\frac{-2}{-\left(-3\right)+2}=\frac{-2}{3+2}=\frac{-2}{5}\)
c)Để M nhận giá trị nguyên
\(\Rightarrow-2⋮-n+2\)
\(\Rightarrow-n+2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)
Nếu \(-n+2=-2\Rightarrow n=4\)
Nếu \(-n+2=-1\Rightarrow n=3\)
Nếu \(-n+2=1\Rightarrow n=1\)
Nếu \(-n+2=2\Rightarrow n=0\)
Vậy với \(n\in\left\{4;3;1;0\right\}\)thì M nhận giá trị nguyên
a) Với \(n\in Z\)thì để \(\frac{5}{n-4}\)có giá trị là số nguyên
\(\Rightarrow5⋮n-4\)
\(\Rightarrow n-4\)là ước của \(5\)
Mà các ước của \(5\) là : \(5;1;-1;-5\)
Ta có bảng sau :
\(n-4\) | \(5\) | \(1\) | \(-1\) | \(-5\) |
\(n\) | \(9\) | \(5\) | \(3\)\(\) | \(-1\) |
\(KL\) | \(TM\) | \(TM\) | \(TM\) | \(TM\) |
Vậy \(n\in\left\{9;5;3;-1\right\}\)thì \(\frac{5}{n-4}\)có giá trị là số nguyên.
b) Với \(n=5\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{5-4}=5\)
Với \(n=-1\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{\left(-1\right)-4}=-1\)
\(M=\frac{6}{n-3}\)
a) Để M không là phân số
\(\Rightarrow n-3=0\)
\(\Rightarrow n=3\)
b) Để M là phân số và có giá trị nguyên
\(\Rightarrow n\ne3\)và \(6⋮n-3\)
\(6⋮n-3\)
\(n-3\in\left\{\pm6;\pm3;\pm2;\pm1\right\}\)
\(\Rightarrow n\in\left\{9;6;5;4;2;1;0;-3\right\}\)
a)Để \(M=\frac{-6}{n-3}\)không phải là p/s thì n-3 = 0 => n=3
Vậy nếu n=3 thì \(M=\frac{-6}{n-3}\)không phải là phân số.
b) Để \(M=\frac{-6}{n-3}\)là phân số thì \(n\ne3\), \(n\in Z\)và \(-6⋮n-3\)
\(-6⋮n-3\Leftrightarrow n-3\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Lập bảng
n-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 4 | 3 | 5 | 1 | 6 | 0 | 9 | -3 |
Vậy nếu \(n\in\left\{0;1;\pm3;4;5;6;9\right\}\),\(n\in Z\)Và \(n\ne3\)thì \(M=\frac{-6}{n-3}\)là phân số và có gtrị nguyên
a. Để M là ps thì :
\(\frac{5}{n-3}\ne0\)
\(\Rightarrow n-3\ne0\)
\(\Rightarrow n\ne3\)
b. Để \(M\in Z\)thì \(n\in Z\)
\(\Rightarrow n-3\inƯ\left(5\right)\)
\(\Rightarrow n-3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{-2;2;4;8\right\}\)