K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2019

Vì các tam giác AMC và BMD đều nên B M D ^ = M A C ^ = 90 °  (vì hai góc ở vị trí đồng vị) => MD // AC

Vì MD // AC nên theo hệ quả định lý Talet cho hai tam giác DEM và AEC ta có M E E C = M D A C = b a

Suy ra

M E E C = b a ⇒ M E M E + E C = b b + a ⇒ M E a = b b + a ⇒ M E = a b b + a

Tương tự MF =  b a a + b

Vậy  M E = M F = a b b + a

Đáp án: B

15 tháng 9 2017

Đặt MB = a => MA = 2a

Vì các tam giác AMC và BMD đều nên B M D ^ = M A C ^ = 60 °  (hai góc ở vị trí đồng vị) => MD // AC

Vì MD // AC nên theo hệ quả định lý Talet cho hai tam giác DEM và AEC ta có

M E E C = M D A C = M B M A = 1 2

Suy ra:

M E E C = b a ⇒ M E M E + E C = 1 1 + 2 = 1 3 ⇒ M E 2 a = 1 3 ⇒ M E = 2 a 3

Tương tự MF =  2 a 3

Vậy  M E = M F = 2 a 3

Đáp án: B

6 tháng 10 2021

Đáp án:

a) EFIK là hình thang cân.

b) FK = 1/2 MD.

Giải thích các bước giải:

Ta có: EF là đường TB của tam giác MBC => EF // BC.

IK là đường TB của tam giác ABD => IK // AB

=> EF // IK => EFIK là hình thang.

Ta có: Gọi N là trung điểm của BC ta có EF // NC, EF = NC => EFNC là hình bình hành => FN // EC

IN là đường TB của tam giác BCD => IN // BD.

Mà BD // MC (góc MCA = góc DBC = 60 độ, mà 2 góc này ở vị trí đồng vị).

=> IN // MC

=> F, I, N thẳng hàng.

=> FI // MC.

Mà IK // AC => góc FIK = góc MCA = 60 độ.

CMTT ta có KE // MA. Mà KI // AC

=> góc EKI = góc MAC = 60 độ.

=> EFIK là hình thang cân.

=> EI = KF.

Mà EI là đường TB của tam giác CDM => EI = ½ MD

=> KF = ½ MD.

image

3 tháng 9 2017

Từ câu trước ta có ME = MF => ΔEMF cân tại M

Ta có A M C ^ + E M F ^ + D M B ^ = 180 ° mà C M A ^ = D M B ^ = 30 °  (tính chất tam giác đều)

Nên:

E M F ^ = 180 ° - M N A ^ - D M B ^ = 180 ° - 60 ° - 60 °

Từ đó MEF là tam giác cân có một góc bằng 60 ° nên nó là tam giác đều

Đáp án: A