K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 9 2021

Từ x=\(\dfrac{1}{2}\)a+\(\dfrac{1}{2}\)b+\(\dfrac{1}{2}\)c=\(\dfrac{1}{2}\).(a+b+c)\(\Rightarrow\)2x=(a+b+c)

M=(x-a)(x-b)+(x-b)(x-c)+(x-c)(x-a)+x\(^2\)

= x\(^2\)-xb-ax+ab+x\(^2\)-xc-bx+bc+x\(^2\)-ax-cx+ac+x\(^2\)

= 4x\(^2\)-2ac-2bx-2cx+ab+bc+ac

= 4x\(^2\)-2x(a+b+c)+ab+bc+ca

Thay 2x=a+b+c,ta được:

M= 4x\(^2\)-2x.2c+ab+bc+ca

M= 4x\(^2\)-4x\(^2\)+ab+bc+ca

M= ab+bc+ca

9 tháng 8 2017

a) \(\dfrac{1}{\left(a-b\right)\left(b-c\right)}+\dfrac{1}{\left(b-c\right)\left(c-a\right)}+\dfrac{1}{\left(c-a\right)\left(a-b\right)}\)

\(=\dfrac{c-a+a-b+b-c}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)

b) \(\dfrac{\left(a^2-\left(b+c\right)^2\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a^2+c^2-2ac-b^2\right)}\)

\(=\dfrac{\left(a-b-c\right)\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(\left(a-c\right)^2-b^2\right)}\)

\(=\dfrac{\left(a-c-b\right)\left(a-c+b\right)}{\left(a-c-b\right)\left(a-c+b\right)}=1\)

c) \(\dfrac{x-1}{x^3}-\dfrac{x+1}{x^3-x^2}+\dfrac{3}{x^3-2x^2+x}\)

\(=\dfrac{x-1}{x^3}-\dfrac{x+1}{x^2\left(x-1\right)}+\dfrac{3}{x\left(x-1\right)^2}\)

\(=\dfrac{\left(x-1\right)^3-x\left(x+1\right)\left(x-1\right)+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{x^3-3x^2+3x-1-x^3+x+3x^2}{x^3\left(x-1\right)^2}\)

\(=\dfrac{4x-1}{x^3\left(x-1\right)^2}\)

d) \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{1}{x+y}.\dfrac{x^3-y^3}{xy}\right):\dfrac{x-y}{x}\)

\(=\left(\dfrac{\left(x-y\right)\left(x+y\right)}{xy}-\dfrac{\left(x-y\right)\left(x^2+xy+y^2\right)}{xy\left(x+y\right)}\right):\dfrac{x-y}{x}\)

\(=\dfrac{\left(x-y\right)\left(x^2+2xy+y^2-x^2-xy-y^2\right)}{xy\left(x+y\right)}.\dfrac{x}{x-y}\)

\(=\dfrac{x}{x+y}\)

10 tháng 8 2017

thanks hihi

Y
13 tháng 2 2019

a) PT \(\Leftrightarrow\dfrac{x^2-x+2}{\left(x-1\right)^3}=\dfrac{A+B\left(x-1\right)+C\left(x-1\right)^2}{\left(x-1\right)^3}\)

\(\Leftrightarrow x^2-x+2=A+Bx-B+Cx^2-2Cx+C\)

\(\Leftrightarrow x^2-x+2=Cx^2+x\left(B-2C\right)+\left(A+C-B\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}C=1\\B-2C=-1\\A+C-B=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}A=2\\B=1\\C=1\end{matrix}\right.\)

27 tháng 11 2022

b: \(\Leftrightarrow\dfrac{x^2+2x-1}{\left(x-1\right)\left(x^2+1\right)}=\dfrac{A\cdot x^2+A+\left(Bx+C\right)\left(x-1\right)}{\left(x^2+1\right)\left(x-1\right)}\)

\(\Leftrightarrow x^2\cdot A+A+x^2\cdot B-x\cdot B+x\cdot C-C=x^2+2x-1\)

\(\Leftrightarrow x^2\left(A+B\right)+x\left(-B+C\right)+A-C=x^2+2x-1\)

=>A+B=1; -B+C=2; A-C=-1

=>A+C=3; A-C=-1; A+B=1

=>A=1; C=2; B=1-A=0

8 tháng 8 2017

ngonhuminh

9 tháng 9 2018

1 ) \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=-15\)

\(\Leftrightarrow x^3-6x^2+12x-8-\left(x^3-27\right)+6\left(x^2+2x+1\right)=-15\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=-15\)

\(\Leftrightarrow\left(x^3-x^3\right)+\left(6x^2-6x^2\right)+\left(12x+12x\right)+\left(27+6-8\right)=-15\)

\(\Leftrightarrow24x+25=-15\)

\(\Leftrightarrow24x=-40\)

\(\Leftrightarrow x=-\dfrac{5}{3}\)

Vậy \(x=-\dfrac{5}{3}\)

a: \(=\dfrac{x+1}{x+2}\cdot\dfrac{x+3}{x+2}\cdot\dfrac{x+1}{x+3}=\dfrac{\left(x+1\right)^2}{\left(x+2\right)^2}\)

b: \(=\dfrac{x+1}{x+2}:\dfrac{\left(x+1\right)\left(x+2\right)}{\left(x+3\right)^2}\)

\(=\dfrac{x+1}{x+2}\cdot\dfrac{\left(x+3\right)^2}{\left(x+1\right)\left(x+2\right)}=\dfrac{\left(x+3\right)^2}{\left(x+2\right)^2}\)

c: \(=\dfrac{\left(x+3\right)\left(x-1\right)-\left(2x-1\right)\left(x+1\right)-\left(x-3\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+2x-3-2x^2-2x+x+1-x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{-x^2+1}{\left(x-1\right)\left(x+1\right)}=-1\)

\(\Leftrightarrow x^2-x+2=A+B\left(x-1\right)+C\left(x^2-2x+1\right)\)

=>x^2-x+2=A+Bx-B+Cx^2-2Cx+C

=>x^2-x+2=x^2*C+x(B-2C)+A-B+C

=>C=1; B-2C=-1; A-B+C=2

=>C=1; B=-1+2*C=-1+2=1; A=2+B-C=2+1-1=2

14 tháng 2 2019
https://i.imgur.com/S6PSQiZ.jpg
22 tháng 2 2019

thanks mày