K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

Đề có lộn ko bạn. Nếu giả sử m và n bằng 1 thì đâu có chia hết cho 3.

=> Vô lí

2 tháng 8 2016

1)

\(n\left(2n+7\right)\left(7n+7\right)=7n\left(n+1\right)\left(2n+4+3\right)\)

\(=7n\left(n+1\right)2\left(n+2\right)+3.7\left(n+1\right)n\)

Ta có n(n+1)(n+2) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

(n+1)n là tích 2 số tự nhien liên tiếp nên chia hêt cho 3

=> 3.7.(n+1)n chia hết cho 6

=>\(n\left(2n+7\right)\left(7n+7\right)\) chia hết cho 6

2)

\(n^3-13n=n^3-n-12n=n\left(n^2-1\right)-12n=n\left(n+1\right)\left(n-1\right)-12n\)

Ta có n(n+1)(n - 1) là tích 3 số tự nhiên liên tiếp nên chia hết cho 6

12n chia hết cho 6

=>\(n^3-13n\) chia hết cho 6

3)

\(m.n\left(m^2-n^2\right)=m^3.n-n^3.m=m.n\left(m^2-1\right)-m.n\left(n^2-1\right)\)

\(=n.\left(m-1\right)m\left(m+1\right)-m\left(n-1\right)n\left(n+1\right)\) chia hết cho 3

2 tháng 8 2016

thanks bạn

11 tháng 8 2015

(-2)3000 = 23000 = (23)1000 = 81000 và (-3)2000 = 32000 = (32)1000 = 91000

=> (-2)3000 < (-3)2000

15 tháng 1 2015

\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

16 tháng 11 2019

a)

=mn(m-n)(m+n)

Nếu 1 trg 2 số chia hết cho 3=> đpcm

Nếu cả 2 số cùng dư =>m-n chia hết cho 3 (đpcm)

Nếu cả 2 số khác dư (khác dư 0)=> m+n chia hết cho 3(đpcm)

Vậy mn(m^2-n^2) chia hết cho 3

b) Có 2005^2006 lẻ; 2006^2005 chẵn

Nếu n lẻ=> n+2005^2006 chẵn

Nếu n chẵn => n+2006^2005 chẵn

=> đều chia hết cho 2

=> đpcm.

8 tháng 9 2015

Ta có 

mn(m^2 - n^2) 
= mn[ (m^2 - 1) - (n^2 - 1) ] 
= m(m^2 - 1)n - mn(n^2 - 1) 
= (m - 1)m(m + 1)n - m(n - 1)n(n + 1) 
Vì (m - 1)m(m + 1) là tích của 3 số nguyên liên tiếp nên nó chia hết cho 2 và 3.

Mà (2 , 3) = 1 => (m - 1)m(m + 1) chia hết cho 6 => (m - 1)m(m + 1)n chia hết cho 6.

Chứng minh tương tự ta được m(n - 1)n(n + 1) chia hết cho 6 
=> (m - 1)m(m + 1)n - m(n - 1)n(n + 1) chia hết cho 6 

Do đó m.n(m2 - n2) chia hết cho 6

8 tháng 9 2015

vì việt làm đúng

ngốc vậy

2 tháng 8 2016

a)

Ta có

\(37^{37}=\left(37^4\right)^9.37=\left(\overline{..........1}\right).37=\left(\overline{..........7}\right)\)

\(23^{23}=\left(23^4\right).23^3=\left(\overline{.........1}\right).12167=\left(\overline{.........7}\right)\)

\(\Rightarrow37^{36}-23^{23}=\left(\overline{........7}\right)-\left(\overline{.........7}\right)=\left(\overline{.............0}\right)\) chia hết cho 10