K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2023

cái nì mik chịu

8 tháng 3 2024

M=(1/5+1/5^2+1/5^3+...+1/5^2023) + 1/5x(1/5+1/5^2+1/5^3+...+1/5^2022) + ... + 1/5^2021x(1/5+1/5^2) + 1/5^2022x1/5

Xét biểu thức N=1/5+1/5^2+1/5^3 + ... + 1/5^k (K>0, k thuộc Z)

=> 5N=1+1/5+1/5^2+1/5^3+...+1/5^(k-1)

=> 4N= 5N - N =1 - 1/5^k

=> 1/5+1/5^2+1/5^3 + ... + 1/5^k = 1/4x(1-1/5^k)

Thay vào biểu thức M, ta có:

M= 1/4x(1-1/5^2023) + 1/5x1/4x(1-1/5^2022) + ... + 1/5^2021x1/4x(1-1/5^2) + 1/5^2022x1/4x(1-1/5)

=> 4M = (1+1/5+1/5^2+...+1/5^2022) - 2023/5^2023

=> 4M = 5/4x(1-1/5^2023)-2023/5^2023 < 5/4

=> M < 5/16 < 1/3 

Vậy M < 1/3 [ vượt chỉ tiêu nhé =)) ]

 

TH
Thầy Hùng Olm
Manager VIP
25 tháng 3 2023

 A-B

A = 50+52+54+...52022

52xA=52+54+...52024 

24xA = 52024-1

A=\(\dfrac{5^{2024}-1}{24}\)

B = 51+53+...52023

B =5x(50+52+...52022) = 5xA

M = A-B = A-5xA = -4A

M=\(\dfrac{1-5^{2024}}{6}\)

Vậy 24xA - 1 = 52024

Nên 52024 chia cho 3 dư 2 

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:
$a=1+5+5^2+5^3+...+5^{2022}+5^{2023}$

$5a=5+5^2+5^3+5^4+....+5^{2023}+5^{2024}$

$\Rightarrow 5a-a=5^{2024}-1$

$\Rightarrow 4a=5^{2024}-1$

$\Rightarrow 4a+1=5^{2024}\vdots 5^{2023}$ (đpcm)

26 tháng 11 2023

a:

Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)

Từ 1 đến 2025 sẽ có:

\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)

Ta có: 1-3=5-7=...=2021-2023=-2

=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này

=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)

b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)

Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)

Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4

=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này

=>\(S=506\cdot\left(-4\right)=-2024\)

2 tháng 1 2024

Tham khảo

\(\text{+)}\)Ta có:\(5\equiv-1\left(mod3\right)\)

\(\Rightarrow5^{2022}\equiv\left(-1\right)^{2022}\left(mod3\right)\left(1\right)\)

\(\text{+)}\)Ta có:\(2\equiv-1\left(mod3\right)\)

\(\Rightarrow2^{2023}\equiv\left(-1\right)^{2023}\left(mod3\right)\left(2\right)\)

Từ \(\left(1\right)\) và \(\left(2\right)\Rightarrow5^{2022}+5^{2023}\equiv0\left(mod3\right)\)

Vậy...

8 tháng 11 2023

S = 5⁰ + 5¹ + 5² + ... + 5²⁰²³

= (5⁰ + 5¹) + (5² + 5³) + ... + (5²⁰²² + 5²⁰²³)

= 6 + 5².(1 + 5) + ... + 5²⁰²².(1 + 5)

= 6 + 5².6 + ... + 5²⁰²².6

= 6.(1 + 5² + ... + 5²⁰²²) ⋮ 6

Vậy S ⋮ 6

--------

Số số hạng của S:

2023 - 0 + 1 = 2024 (số)

2024 : 3 dư 2 nên khi nhóm các số hạng của S theo nhóm 3 thì dư 2 số hạng

Ta có:

S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³

= 5⁰ + 5¹ + (5² + 5³ + 5⁴) + (5⁵ + 5⁶ + 5⁷) + ... + (5²⁰²¹ + 5²⁰²² + 5²⁰²³)

= 6 + 5².(1 + 5 + 5²) + 5⁵.(1 + 5 + 5²) + ... + 5²⁰²¹.(1 + 5 + 5²)

= 6 + 5².31 + 5⁵.31 + ... + 5²⁰²¹.31

= 6 + 31.(5² + 5⁵ + ... + 5²⁰²¹)

Do 31.(5² + 5⁵ + ... + 5²⁰²¹) ⋮ 31

6 + 31.(5² + 5⁵ + ... + 5²⁰²¹) chia 31 dư 6

Vậy S chia 31 dư 6

------------

Sửa đề:

Tìm số tự nhiên n để 4S - 25² = -1

S = 5⁰ + 5¹ + 5² + 5³ + ... + 5²⁰²³

5S = 5 + 5² + 5³ + 5⁴ + ... + 5²⁰²⁴

⇒ 4S = 5S - S

= (5 + 5² + 5² + 5³ + ... + 5²⁰²⁴) - (1 + 5¹ + 5² + 5³ + ... + 5²⁰²³)

= 5²⁰²⁴ - 1

⇒ 4S - 25²ⁿ = -1

⇒ 5²⁰²⁴ - 1 - (5²)²ⁿ = -1

⇒ 5²⁰²⁴ - 5⁴ⁿ = -1 + 1

⇒ 5⁴ⁿ = 5²⁰²⁴

⇒ 4n = 2024

⇒ n = 2024 : 4

⇒ n = 506

DT
8 tháng 11 2023

\(S=\left(5^0+5^1\right)+\left(5^2+5^3\right)+...+\left(5^{2022}+5^{2023}\right)\\ =6+5^2\left(1+5\right)+...+5^{2022}\left(1+5\right)\\ =6+5^2.6+...+5^{2022}.6\\ =6\left(1+5^2+...+5^{2022}\right)⋮6\)

\(S=\left(5^0+5^1+5^2\right)+...+\left(5^{2021}+5^{2022}+5^{2023}\right)\\ =31+...+5^{2021}\left(1+5+5^2\right)\\ =31\left(1+...+5^{2021}\right)⋮31\)

=> Dư : 0

\(5S=5^1+5^2+5^3+5^4+...+5^{2024}\\ =>5S-S=4S=5^{2024}-1\)

Mà : \(4S-25^{2n}=1\\ =>5^{2024}-1-25^{2n}=1\\ =>5^{2024}-25^{2n}=2\)

Bạn xem lại đề nhé

 

11 tháng 5 2023

Ta có thể viết lại M dưới dạng:

M = (1/2³) + (2/3³ - 1/2³) + (3/4³ - 2/3³) + … + (2022/2023³ - 2021/2022³)

= (1/2³) + [(2/3³ - 1/2³) + (3/4³ - 2/3³)] + … + [(2022/2023³ - 2021/2022³) + (2023/2024³ - 2022/2023³)]

= (1/2³) + (1/3³ - 1/2³) + … + (1/2023³ - 1/2022³)

= 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³)

Ta sử dụng kết quả sau đây: Với mọi số nguyên dương n, ta có

1/n³ > 1/(n+1)³

Điều này có thể được chứng minh bằng cách sử dụng đạo hàm hoặc khai triển. Do đó,

1/2³ > 1/3³
1/3³ > 1/4³

1/2022³ > 1/2023³

Vậy ta có

M = 1/2³ + (1/2³ - 1/3³) + (1/3³ - 1/4³) + … + (1/2022³ - 1/2023³) < 1/2³ + 1/3³ + 1/4³ + … + 1/2023³

Để chứng minh rằng M không phải là một số tự nhiên, ta sẽ chứng minh rằng tổng các số mũ ba nghịch đảo từ 1 đến 2023 không phải là một số tự nhiên. Điều này có thể được chứng minh bằng phương pháp giả sử ngược lại và dẫn đến mâu thuẫn.

Giả sử tổng các số mũ ba nghịch đảo từ 1 đến 2023 là một số tự nhiên, ký hiệu là S. Ta có:

S = 1/1³ + 1/2³ + 1/3³ + … + 1/2023³

Với mọi số nguyên dương n, ta có:

1/n³ < 1/n(n-1)

Do đó,

1/1³ < 1/(1x2)
1/2³ < 1/(2x3)
1/3³ < 1/(3x4)
...

1/2023³ < 1/(2023x2024)

Tổng các số hạng bên phải có thể được viết lại dưới dạng:

1/(1x2) + 1/(2x3) + 1/(3x4) + … + 1/(2023x2024) = (1 - 1/2) + (1/2 - 1/3) + (1/3 - 1/4) + … + (1/2023 - 1/2024) = 1 - 1/2024 < 1

Vậy tổng các số mũ ba nghịch đảo từ 1 đến 2023 cũng nhỏ hơn 1. Điều này mâu thuẫn với giả sử ban đầu rằng tổng này là một số tự nhiên. Do đó, giá trị của M không phải là một số tự nhiên.