K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2: 

1: \(5^n+5^{n+2}=650\)

\(\Leftrightarrow5^n\cdot26=650\)

\(\Leftrightarrow5^n=25\)

hay x=2

2: \(32^{-n}\cdot16^n=1024\)

\(\Leftrightarrow\dfrac{1}{32^n}\cdot16^n=1024\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^n=1024\)

hay n=-10

13: \(9\cdot27^n=3^5\)

\(\Leftrightarrow3^{3n}=3^5:3^2=3^3\)

=>3n=3

hay n=1

30 tháng 9 2017

3/ ta để ý thấy ở số mũ sẽ có thừa số 1000-103=0

nên số mũ chắc chắn bằng 0

mà số nào mũ 0 cũng bằng 1 nên A=1

5/ vì |2/3x-1/6|> hoặc = 0

nên A nhỏ nhất khi |2/3x-6|=0

=>A=-1/3

6/ =>14x=10y=>x=10/14y

23x:2y=23x-y=256=28

=>3x-y=8

=>3.10/4y-y=8

=>6,5y=8

=>y=16/13

=>x=10/14y=10/14.16/13=80/91

8/106-57=56.26-56.5=56(26-5)=59.56 

có chứa thừa số 59 nên chia hết 59

4/ tính x 

sau đó thế vào tinh y,z

2 tháng 4 2017

Mình bổ sung thêm cho đề bài 2 là CMR với n thuộc N*

14 tháng 6 2017

Bài 1:

c) \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.4^4.5^4}{5^{10}.4^5}=\dfrac{5^8.4^4}{5^8.5^2.4^4.4}=\dfrac{1}{25.4}=\dfrac{1}{100}\)

Bài 2: a) \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{5}\right)^{2004}\ge0\forall x\\\left(y+0,4\right)^{100}\ge0\forall y\\\left(z-3\right)^{678}\ge0\forall z\end{matrix}\right.\) \(\Rightarrow\left(x-\dfrac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}\ge0\forall x,y,z\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{5}\\y=-\dfrac{2}{5}\\z=3\end{matrix}\right.\)

Vậy ...

Bài 3: \(M=\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}\)

\(=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=\dfrac{2^{20}}{2^{12}}=2^8=256.\)

Vậy \(M=256.\)

Mấy bài kia dễ tự làm.

14 tháng 6 2017

\(3)\)

\(\dfrac{8^{10}+4^{10}}{8^4+4^{11}}=\dfrac{\left(2^3\right)^{10}+\left(2^2\right)^{10}}{\left(2^3\right)^4+\left(2^2\right)^{11}}=\dfrac{2^{30}+2^{20}}{2^{12}+2^{22}}=\dfrac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(2^{10}+1\right)}=\dfrac{2^{20}}{2^{12}}=2^8=256\)\(4)\)

\(2^{24}=\left(2^6\right)^4=64^4;3^{16}=\left(3^4\right)^4=81^4\)

\(\Leftrightarrow2^{24}< 3^{16}\)

23 tháng 12 2018

\(a)\dfrac{1}{4}-\dfrac{3}{4}:\left(\dfrac{-5}{8}\right)\)

\(=\dfrac{1}{4}-\dfrac{3}{4}.\dfrac{-8}{5}\)

\(=\dfrac{1}{4}-\dfrac{-6}{5}\)

\(=\dfrac{5}{20}+\dfrac{24}{20}\)

\(=\dfrac{29}{20}\)

\(b)3-\left(\dfrac{-6}{7}\right)^0+\sqrt{\dfrac{1}{16}}:2\)

\(=3-1+\sqrt{\left(\dfrac{1}{4}\right)^2}:2\)

\(=2+\dfrac{1}{4}.\dfrac{1}{2}\)

\(=\dfrac{16}{8}+\dfrac{1}{8}\)

\(=\dfrac{17}{8}\)

\(c)\dfrac{9^5.2^6}{4^3.3^8}=\dfrac{\left(3^2\right)^5.2^6}{\left(2^2\right)^3.3^8}=\dfrac{3^{10}.2^6}{2^6.3^8}=3^2=9\)

23 tháng 12 2018

cảm ơn bạn

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là............... 2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai 3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\) e/\(x^2=0,81\) ...
Đọc tiếp

1/Trong các số:\(\sqrt{\left(-5\right)^2}\);\(\sqrt{5^2}\);\(-\sqrt{\left(-5\right)^2}\);\(-\sqrt{5^2}\)căn bậc hai số học của 25 là...............

2/Kết quả nào đúng:A/0,15∈I , B/\(\sqrt{2}\in Q\) , C/\(\dfrac{3}{5}\in R\) , D/Ba kết quả trên đều sai

3/Tìm x,biết:a/\(-\sqrt{x}=\left(-7\right)^2\) b/\(\sqrt{x+1}+2=0\) c/\(5\sqrt{x+1}+2=0\) d/\(\sqrt{2x-1}=29\)

e/\(x^2=0,81\) g/\(\left(x-1\right)^2=1\dfrac{9}{16}\) h/\(\sqrt{3-2x}=1\) f/\(\sqrt{x}-x=0\)

4/Cho A=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\).CMR với x=\(\dfrac{16}{9}\) và x=\(\dfrac{25}{9}\) thì A có giá trị là số nguyên.

5/Tính:a/\(\sqrt{m^2}\) với \(m\ge0?\) b/\(\sqrt{m^2}\) với \(m< 0\)

6/Tính \(x^2\),biết rằng:\(\sqrt{3x}=9\)?

7/Tính:\(\left(x-3\right)^2\) biết rằng:\(\sqrt{x-3}=2\)?

8/Tính:a/\(2\sqrt{a^2}\) với \(a\ge0\) b/\(\sqrt{3a^2}\) với a<0 c/\(5\sqrt{a^4}\) với a<0 d/\(\dfrac{1}{3}\sqrt{c^6}\)với c<0

9/So sánh:A=\(\dfrac{25}{49}\) ; B=\(\dfrac{\sqrt{5^2}+\sqrt{25^2}}{\sqrt{7^2}+\sqrt{49^2}}\) ; C=\(\sqrt{\dfrac{5^2}{7^2}}\) ; D=\(\dfrac{\sqrt{5^2}-\sqrt{25^2}}{\sqrt{7^2}-\sqrt{49^2}}\)

10/Cho P=\(-2019+2\sqrt{x}\) và Q=\(0,6-2\sqrt{x+3}\) a/Tìm GTNN của P? b/Tìm GTLN của Q?

11/Cho B=\(\dfrac{\sqrt{x+1}}{\sqrt{x-3}}\).Tìm số nguyên x để B có giá trị là một số nguyên?

12/a/Trong các giá trị của a là \(3,-4,0,10,-5\) giá trị thỏa mãn đẳng thức\(\sqrt{a^2}=a\)

b/Trong các giá trị của a là \(2,-6,0,1,-5\) giá trị thỏa mãn đẳng thức \(\sqrt{a^2}=|x|\)

6
AH
Akai Haruma
Giáo viên
31 tháng 7 2018

1) Theo định nghĩa về căn bậc 2 số học thì đáp án là \(\sqrt{5^2}; \sqrt{(-5)^2}\)

2) Tập $Q$ là tập những số thực biểu diễn được dưới dạng \(\frac{a}{b}\) (a,b tự nhiên, $b$ khác $0$), tập $I$ là tập những số thực không biểu diễn được dạng như trên.

\(0,15=\frac{3}{20}\in\mathbb{Q}\) , A sai.

$\sqrt{2}$ là một số vô tỉ (tính chất quen thuộc), B sai.

$C$ hiển nhiên đúng, theo định nghĩa.

Do đó áp án đúng là C.

AH
Akai Haruma
Giáo viên
31 tháng 7 2018

3)

a) \(-\sqrt{x}=(-7)^2=49\)

\(\Rightarrow \sqrt{x}=-49\) (vô lý, vì căn bậc 2 số học của một số là một số không âm , trong khi đó $-49$ âm)

Do đó pt vô nghiệm.

b) \(\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=-2<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

c) \(5\sqrt{x+1}+2=0\Rightarrow \sqrt{x+1}=\frac{-2}{5}<0\)

Điều trên hoàn toàn vô lý do căn bậc 2 số học là một số không âm

Vậy pt vô nghiệm.

d) \(\sqrt{2x-1}=29\Rightarrow 2x-1=29^2=841\Rightarrow x=\frac{841+1}{2}=421\)

e)\(x^2=0\Rightarrow x=\pm \sqrt{0}=0\)

g) \((x-1)^2=1\frac{9}{16}=\frac{25}{16}\)

\(\Rightarrow x-1=\pm \sqrt{\frac{25}{16}}=\pm \frac{5}{4}\)

\(\Rightarrow \left[\begin{matrix} x=\frac{9}{4}\\ x=\frac{-1}{4}\end{matrix}\right.\)

h) \(\sqrt{3-2x}=1\Rightarrow 3-2x=1^2=1\Rightarrow x=\frac{3-1}{2}=1\)

f) \(\sqrt{x}-x=0\Rightarrow \sqrt{x}=x\Rightarrow x=x^2\)

\(\Rightarrow x(1-x)=0\Rightarrow \left[\begin{matrix} x=0\\ x=1\end{matrix}\right.\)

24 tháng 6 2015

1)Ta có ; x:y:z=3:4:5 =>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x^2}{3^2}=\frac{y^3}{4^3}=\frac{z^2}{5^2}\Rightarrow\frac{2x^2}{18}=\frac{2y^3}{128}=\frac{3z^2}{75}\)

áp đụng tính chất của dãy tỉ số bằng nhau và 2x2+2y3-3z2=-100

Ta được : \(\frac{2x^2}{18}=\frac{2y^3}{128}=\frac{3z^2}{75}=\frac{2x^2+2y^3-3z^2}{18+128-75}=\frac{-100}{71}\)

CÒN LẠI BẠN TỰ TÍNH NHÉ

24 tháng 6 2015

2)

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a^1-1}{9}=\frac{a^2+2}{8}=...=\frac{a^9-9}{1}\)

=\(\frac{a^1-1+a^2-2+...+a^9-9}{9+8+...+1}=\frac{\left(a^1+a^2+...+a^9\right)-\left(9+8+...+1\right)}{9+8+...+1}\)

=\(\frac{90-45}{45}=\frac{45}{45}=1\)

suy ra:\(\frac{a^1-1}{9}=1\Rightarrow a^1=10\)tương tự ta có: a1=a2=...=a9=10