K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2023

\(M=2+2^2+2^3+...+2^{20}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{19}+2^{20})\\=6+2^2\cdot(2+2^2)+2^4\cdot(2+2^2)+...+2^{18}\cdot(2+2^2)\\=6+2^2\cdot6+2^4\cdot6+...+2^{18}\cdot6\\=6\cdot(1+2^2+2^4+...+2^{18})\)

Vì \(6\cdot(1+2^2+2^4+...+2^{18})\vdots6\)

nên \(M\vdots6\)

Vậy \(M\vdots6\).

27 tháng 2 2018

a, Nhóm 2 số thành một cặp thì mỗi cặp đều chia hết cho 3

Ví dụ : 1+2 = 3

            2^98 + 2^99 = 2^98.(1+2) = 3.2^98 chia hết cho 3

=> M chia hết cho 3

b, chữ số tận cùng của M là 5

Tk mk nha

15 tháng 11 2021

1)  A=62020+62021+62022+62023

    A= ( 62020+62021) +  ( 62022+62023)

    A= 62020.( 1+6) + 62022.( 1+6)

    A= 62020.7+62022.7

    A= 7.( 62020+62022)

Vì 7 chia hết cho 7 => 7.(62020+62022) chia hết cho 7 hay A chia hết cho 7.

Vậy A chia hết cho 7

    _HT_

15 tháng 11 2021

2)  1+2+3+...+n=1275

Ta thấy dãy số trên là dãy số cách đều nên có khoảng cách là 1 đơn vị 

=> Dãy số trên có n số hạng

Tổng của dãy số trên là :   (n+1).n:2 = 1275

                                          (n+1).n= 1275.2=2550

Mà n và n+1 là 2 số tự nhiên liên tiếp => (n+1).n = 51.50

=> n=50 ( vì n< n+1)

  Vậy n=50

_HT_

10 tháng 8 2017

tìm diện tích của 1 hình thang biết rằng nếu kéo dài đáybé 2m về 1 phia thì ta đc hình vuông có chu vi 24m.

GIÚP MÌNH VỚI MÌNH ĐANG CẦN RẤT RẤT GẤP!!!

19 tháng 10 2018

ta có A=2+2^2+2^3+2^4+2^5+2^6+.....+2^58+2^59+2^60

A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^58+2^59+2^60)

A=14+2^3.(2+2^2+2^3)+.....+2^57.(2+2^2+2^3)

A=14+2^3.14+...+2^57.14

A=14.(1+2^3+...+2^57)\(⋮\)14

=> ĐPCM

19 tháng 10 2018

chia hết cho 2 và7 nhóm lại sẽ chia hết cho 7

15 tháng 11 2021

1: \(A=6^{2020}\left(1+6\right)+6^{2022}\left(1+6\right)\)

\(=7\left(6^{2020}+6^{2022}\right)⋮7\)

AH
Akai Haruma
Giáo viên
16 tháng 11 2021

Bài 1:

$A=6^{2020}(1+6+6^2+6^3)=6^{2020}.259=6^{2020}.7.37\vdots 7$

Ta có đpcm.

tk đi làm cho hứa

a)M = 1 + 3 + 32 +....+ 3118 + 3119

M = (1 + 3 + 32)+(33+34+35)+...+(3117+3118+3119)

M = 1x(1+3+9)+33x(1+3+9)+...+3117x(1+3+9)

M = 1x13+33x13+...+3117x13

M = 13x(1+33+...+3117)

Vậy M chia hết cho 13

\(A=2+2^2+2^3+2^4+...+2^{100}\)

\(=2+\left(2^2+2^3+2^4\right)+...+\left(2^{98}+2^{99}+2^{100}\right)\)

\(=2+2^2\left(1+2+2^2\right)+...+2^{98}\left(1+2+2^2\right)\)

\(=2+7\cdot\left(2^2+2^5+...+2^{98}\right)\)

=>A không chia hết cho 7 mà là chia 7 dư 2 nha bạn