K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

giúp bố với bay

27 tháng 4 2018

Ta có : 2M = 2 +\(\frac{3}{2}\)+\(\frac{4}{2^2}\)+...+\(\frac{2017}{2^{2015}}\)\(\frac{2018}{2^{2016}}\)

 2M - M = 2 + \(\frac{3}{2}\)\(\frac{2}{2}\)\(\frac{4}{2^2}\)-\(\frac{3}{2^2}\)+...+\(\frac{2017}{2^{2015}}\)-\(\frac{2016}{2^{2015}}\)\(\frac{2018}{2^{2016}}\)-\(\frac{2017}{2^{2016}}\)-\(\frac{2018}{2^{2017}}\)

 M = 2 + \(\frac{1}{2}\)+\(\frac{1}{2^2}\)+...+\(\frac{1}{2^{2015}}\)\(\frac{1}{2^{2016}}\)-\(\frac{2018}{2^{2017}}\)

 Đặt N = \(\frac{1}{2}\)+\(\frac{1}{2^2}\)+...+\(\frac{1}{2^{2016}}\)

Ta có :2N = 1 + \(\frac{1}{2}\)+\(\frac{1}{2^2}\)+ .....+\(\frac{1}{2^{2015}}\)

2N - N = 1\(\frac{1}{2^{2016}}\)

Vậy N < 1 

Nên M < 2 + 1 - \(\frac{2018}{2^{2017}}\)= 3 -\(\frac{2018}{2^{2017}}\)

Vậy M < 3

13 tháng 5 2018

rgebdrwrybwrybery

18 tháng 2 2020

\(A=\frac{1}{2018}+\frac{2}{2017}+...+\frac{2017}{2}+2018\)

\(=\left(\frac{1}{2018}+1\right)+\left(1+\frac{2}{2017}\right)+...+\left(\frac{2017}{2}+1\right)+1\)(2018 số hạng 1)

\(=\frac{2019}{2018}+\frac{2019}{2017}+...+\frac{2019}{2}+\frac{2019}{2019}=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)\)

Mà \(B=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)

=> Khi đó : \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)

21 tháng 2 2021

??????????????????????????????????????????????????????????????????????????????????????????????????????????????

9 tháng 4 2023

+) Gọi A là tổng của dãy số: 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018.
+) Số số hạng của A là:
A = (2018 - 1) : 1 + 1 = 2018.
+) Tổng A là: (2018 + 1). 2018 : 1 = 4074342.
Vậy, A = 4074342 (hay 1+ 2 + 3 + 4 + ... + 2016 + 2017 + 2018 = 4074342). 

9 tháng 4 2023

Ah bạn à chia 2 mà ._. Nhưng mà cảm ơn

18 tháng 3 2018

\(A=\dfrac{\dfrac{1}{2017}+\dfrac{2}{2016}+\dfrac{3}{2015}+...+\dfrac{2016}{2}+\dfrac{2017}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\left(\dfrac{1}{2017}+1\right)+\left(\dfrac{2}{2016}+1\right)+\left(\dfrac{3}{2015}+1\right)+...+\left(\dfrac{2016}{2}+1\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{\dfrac{2018}{2017}+\dfrac{2018}{2016}+\dfrac{2018}{2015}+...+\dfrac{2018}{2}+\dfrac{2018}{2018}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}\)

\(A=\dfrac{2018\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2016}+\dfrac{1}{2017}+\dfrac{1}{2018}}=2018\)