Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
M=2+22+23+24+...+220
M=(2+22+23+24)+...+(217+218+219+220)
M=1.(2+22+23+24)+...+216.(2+22+23+24)
M=1.30+...+216.30
M=30.(1+...+216)
Vì 30 chia hết cho 10
=> 30.(1+...+216) chia hết cho 10 hay M chia hết cho 10
Vậy M = 2+22+23+24+...+220 chia hết cho 10.
_HT_
M = 2 + 2^2 + 2^3 + ... + 2^20
M . 2 = 2^2 + 2^3 + 2^4 + ... + 2^21
M . 2 - M = (2^2 + 2^3 + 2^4 + ... + 2^21) - (2 + 2^2 + 2^3 + ... + 2^20)
M = 2^21 - 2
M = 2^20 . 2 - 2
M = (2^4)^5 . 2 - 2
M = 16^5 . 2 -2
M = ...6 . 2 - 2 (... 6 khi viết vào bài bạn nhớ thêm dấu gạch ngang trên đầu nhé!)
M = ...2 - 2 (Ở đây cũng thêm dấu gạch ngang trên đầu số ...12 nhé!)
M = ...0 (Thêm dấu gạch ngang trên đầu)
=> M chia hết cho 10
=> ĐPCM
mình nhầm chỗ: 219(2 + 22 + 23) mà là 218(2 + 22 + 23)
nhóm đầu: 2 + 22 + 23 = 14
nhóm hai: 24 + 25 + 26 = 23(2 + 22 + 23) = 23 x 14
............
nhóm cuối: 219 + 220 + 221 = 218(2 + 22 + 23) = 218 x 14
a)
\(A=2+2^2+2^3+2^4+...+2^{19}+2^{20}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{19}+2^{20}\right)\)
\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{18}\left(2+2^2\right)\)
\(A=6+2^2\cdot6+...+2^{18}\cdot6\)
\(A=3\cdot2+2^2\cdot3\cdot2+...+2^{18}\cdot3\cdot2\)
\(A=3\left(2\cdot2^3+...+2^{19}\right)⋮3\) (đpcm)
Còn phần b) tớ chịu =))
M = 6 ( 1/3 + 2/3 + .....+ 220 /6) chia hết cho 3
M = 10 ( 1/5 + 2/5 + ....+ 220/10) chia hết cho 5
học tốt
Chứng tỏ rằng M chia hết cho 5:
M = 2 + 22 + 23 + … + 220
= (2 + 22 + 23 + 24) + (25 + 26 + 27 + 28) + … + (217 + 218 + 219 + 220)
= 2.(1 + 2 + 22 + 23 ) + 25.(1 + 2 + 22 + 23) + … +217.(1 + 2 + 22 +23)
= 2. 15 + 25.15 + …+ 217.15
= 15. 2(1 + 24 + …+ 216) = 3 . 5 .2 .(1 + 24 + …+ 216)
M=2+22+23+24+...+220⋮ 5 (ĐPCM)
Dễ thấy a1b1 = 3.3 = 9.1 = c1d1 và a2b2 = 2.(-5) =(-1).10 =c2d2
P(x) = (9x2 – 9x – 10)(9x2 + 9x – 10) + 24x2
Đặt y = (3x +2)(3x – 5) = 9x2 – 9x – 10 thì P(x) trở thành:
Q(y) = y(y + 10x) = 24x2
Tìm m.n = 24x2 và m + n = 10x ta chọn được m = 6x , n = 4x
Ta được: Q(y) = y2 + 10xy + 24x2
= (y + 6x)(y + 4x)
Do đó: P(x) = ( 9x2 – 3x – 10)(9x2 – 5x – 10).
a) (x-14):2=24-3
(x-14):2 = 13
x-14 = 13.2
x-14 = 26
x = 26 + 14
x = 40
b) x572 = x <=> x = 1 hoặc 0
a, b làm như trên nha, còn mấy bìa còn lại :
M=1+2+22+...+211
M = \(\left(1+2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}+2^{11}\right)\)
M = (1+2+4+8+16+32) + 26( 1 + 2 + 22+23+24+25)
M = 63 + 26.63
M = 63 ( 1+ 26)
M= 9.7 (1 + 2^6) chia hết cho 9 => M chia hết cho 9
S=3 + 32 +33 +.....+ 39
S = \(\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)\)
S = \(3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+3^7\left(1+3+3^2\right)\)
S= 3. 13 + 3^4.13 + 3^7.13
S= 13 ( 3 +3^4+3^4) chia hết cho 13 => S chia hết cho 13
M= 2+ 22 + 23+....+210
M= \(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
M = \(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(M=2.3+2^3.3+...+2^9.3\)
M = 3( 2+ 2^3 +...+ 2^9) chia heets cho 3
=> M chia hết cho 3
A= 7+ 72 + 73 +.....+78
A= \(\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
A= \(7\left(1+7+7^2+7^3\right)+7^5\left(1+7+7^2+7^3\right)\)
A= 7. 400 + 7^5 . 400
A = 400( 7+7^5)
A = 5 . 80 ( 7+7^5) chia hết cho 5 => A chia hết cho 5
vì chữ số tận cùng của lũy thừa trong dãy số là số chẵn,ta có(2+4+6+8)=20 chia hết cho 5 nên tổng dãy trên chia hết cho 5
vì M có 2 chữ số có tận cùng = 0
=> M có tận cùng là 0 chia hết cho 5
tích nhá