K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

\(M=2+2^2+2^3+.............+2^{10}\)

\(\Leftrightarrow M=\left(2+2^2+.....+2^5\right)+\left(2^6+2^7+....+2^{10}\right)\)

\(\Leftrightarrow M=2\left(1+2+.....+2^4\right)+2^6\left(1+2+....+2^4\right)\)

\(\Leftrightarrow M=2.31+2^6.31\)

\(\Leftrightarrow M=31\left(2+2^6\right)⋮31\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 1)

a) Ta có: \(A=m^2+m+1=m(m+1)+1\)

Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn

Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$

b)

Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1

Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3

Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2

Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3

Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1

Như vậy tóm tại $A$ không chia hết cho 5

AH
Akai Haruma
Giáo viên
8 tháng 7 2018

Bài 2:

a) \(P=2+2^2+2^3+...+2^{10}\)

\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)

\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)

\(=3(2+2^3+2^5+..+2^9)\vdots 3\)

Ta có đpcm

b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)

\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)

\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)

Ta có dpcm.

13 tháng 1 2016

Ta có ﴾6x+11y﴿ =31﴾x+6y﴿‐25﴾x+7y﴿

Do 6x+11y và 31﴾x+6y﴿ đều chia hết cho 31

=> 25﴾x+7y﴿ chia hết cho 31

Do ﴾25,31﴿=1 ﴾vì 25;31 là hai số nguyên tố cùng nhau﴿

Nên x+7y chia hết cho 31

Vậy ... 

13 tháng 1 2016

1) Xét hiệu:

               6 x (a+7b)-(6a+11b)

            = 6a+42b-6a-11b

           =31b

Vs b thuộc N thì 31b chia hết cho 31

         =>6 x (a+7b)-(6a+11b) chia hết cho 31

Mà a+7b chia hết cho 31 nên 6 x (a+7b) chia hết cho 31

            =>6a+11b chia hết cho 31

21 tháng 10 2017

C1:\(A=2_{ }\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1++2+4+8+16\right)\)

       \(A=31\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

C2: Tương Tự

31 tháng 7 2017

1) B = 31 + 32 +...+ 32010

= (3+32) + (33 + 34) + ...+ (32009 + 32010 )

= 3(1+3) + 33(1+3) + ...+ 32009(1+3)

= 3.4 + 33.4 + ...+ 32009.4

= 4(3+ 33 +...+ 32009) \(⋮\) 4 (1)

B = (3+ 32 + 33) +(34 + 35 + 36 ) +...+ (32008 + 32009 + 32010)

= 3(1+3+32) + 34(1+3+32) + ...+ 32008(1+3+32)

= 3.13 + 34.13 + ...+ 32008.13 \(⋮\) 13 (2)

Từ (1) và (2) => đpcm

b) Làm tương tự như câu a)

3)

a) Số chữ số chia hết cho 55 từ 11 đến 10001000

\(\dfrac{1000-5}{5}\)+1 =200 (số)

b)Ta thấy 1015 \(\equiv\) 1 (mod 9 ) ; 8 \(\equiv\) 8(mod 9 )

=> 1015 + 8 \(\equiv\) 0 (mod 9)

=> 1015 + 8 \(⋮\) 9

Tương tự 1015 + 8 chia hết cho 2 ( 1015 và 8 chẵn)

c) 102010 + 8 = 1000....0 (2010 chữ số 0 ) + 8 = 1000...08 (2009 chữ số 0) có tổng các chữ số : 1 + 0+ 0+...+0+8 = 9 chia hết cho 9

=> 102010 + 8 chia hết cho 9

d) Ta có : ab + ba

= 10a + b + 10b + a

= 11a + 11b

= 11(a+b) \(⋮\) 11

e) Ta có : aaa = 100a + 10a + a = (100+10+1)a = 111a = 37.3.a \(⋮\) 37

Chúc bn học tốt !

3 tháng 5 2016

ta có 

\(Q=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)

\(Q=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)

\(Q=2.31+2^6.31=31\left(2+2^6\right)\)

vậy Q chia hết cho 31

11 tháng 10 2018

Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath