Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1)
a) Ta có: \(A=m^2+m+1=m(m+1)+1\)
Vì $m,m+1$ là hai số tự nhiên liên tiếp nên tích của chúng chia hết cho $2$ hay $m(m+1)$ chẵn
Do đó $m(m+1)+1$ lẻ nên $A$ không chia hết cho $2$
b)
Nếu \(m=5k(k\in\mathbb{N})\Rightarrow A=25k^2+5k+1=5(5k^2+k)+1\) chia 5 dư 1
Nếu \(m=5k+1\Rightarrow A=(5k+1)^2+(5k+1)+1=25k^2+15k+3\) chia 5 dư 3
Nếu \(m=5k+2\Rightarrow A=(5k+2)^2+(5k+2)+1=25k^2+25k+7\) chia 5 dư 2
Nếu \(m=5k+3\Rightarrow A=(5k+3)^2+(5k+3)+1=25k^2+35k+13\) chia 5 dư 3
Nếu \(m=5k+4\) thì \(A=(5k+4)^2+(5k+4)+1=25k^2+45k+21\) chia 5 dư 1
Như vậy tóm tại $A$ không chia hết cho 5
Bài 2:
a) \(P=2+2^2+2^3+...+2^{10}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^9+2^{10})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+..+2^9(1+2)\)
\(=3(2+2^3+2^5+..+2^9)\vdots 3\)
Ta có đpcm
b) \(P=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^{10})\)
\(=2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)\)
\(=(1+2+2^2+2^3+2^4)(2+2^6)=31(2+2^6)\vdots 31\)
Ta có dpcm.
Ta có ﴾6x+11y﴿ =31﴾x+6y﴿‐25﴾x+7y﴿
Do 6x+11y và 31﴾x+6y﴿ đều chia hết cho 31
=> 25﴾x+7y﴿ chia hết cho 31
Do ﴾25,31﴿=1 ﴾vì 25;31 là hai số nguyên tố cùng nhau﴿
Nên x+7y chia hết cho 31
Vậy ...
1) Xét hiệu:
6 x (a+7b)-(6a+11b)
= 6a+42b-6a-11b
=31b
Vs b thuộc N thì 31b chia hết cho 31
=>6 x (a+7b)-(6a+11b) chia hết cho 31
Mà a+7b chia hết cho 31 nên 6 x (a+7b) chia hết cho 31
=>6a+11b chia hết cho 31
C1:\(A=2_{ }\left(1+2+4+8+16\right)+2^6\left(1+2+4+8+16\right)+...+2^{96}\left(1++2+4+8+16\right)\)
\(A=31\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)
C2: Tương Tự
1) B = 31 + 32 +...+ 32010
= (3+32) + (33 + 34) + ...+ (32009 + 32010 )
= 3(1+3) + 33(1+3) + ...+ 32009(1+3)
= 3.4 + 33.4 + ...+ 32009.4
= 4(3+ 33 +...+ 32009) \(⋮\) 4 (1)
B = (3+ 32 + 33) +(34 + 35 + 36 ) +...+ (32008 + 32009 + 32010)
= 3(1+3+32) + 34(1+3+32) + ...+ 32008(1+3+32)
= 3.13 + 34.13 + ...+ 32008.13 \(⋮\) 13 (2)
Từ (1) và (2) => đpcm
b) Làm tương tự như câu a)
3)
a) Số chữ số chia hết cho 55 từ 11 đến 10001000 là
\(\dfrac{1000-5}{5}\)+1 =200 (số)
b)Ta thấy 1015 \(\equiv\) 1 (mod 9 ) ; 8 \(\equiv\) 8(mod 9 )
=> 1015 + 8 \(\equiv\) 0 (mod 9)
=> 1015 + 8 \(⋮\) 9
Tương tự 1015 + 8 chia hết cho 2 ( 1015 và 8 chẵn)
c) 102010 + 8 = 1000....0 (2010 chữ số 0 ) + 8 = 1000...08 (2009 chữ số 0) có tổng các chữ số : 1 + 0+ 0+...+0+8 = 9 chia hết cho 9
=> 102010 + 8 chia hết cho 9
d) Ta có : ab + ba
= 10a + b + 10b + a
= 11a + 11b
= 11(a+b) \(⋮\) 11
e) Ta có : aaa = 100a + 10a + a = (100+10+1)a = 111a = 37.3.a \(⋮\) 37
Chúc bn học tốt !
ta có
\(Q=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(Q=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)
\(Q=2.31+2^6.31=31\left(2+2^6\right)\)
vậy Q chia hết cho 31
Bạn tham khảo ở đây: Câu hỏi của phương vy - Toán lớp 6 - Học toán với OnlineMath
\(M=2+2^2+2^3+.............+2^{10}\)
\(\Leftrightarrow M=\left(2+2^2+.....+2^5\right)+\left(2^6+2^7+....+2^{10}\right)\)
\(\Leftrightarrow M=2\left(1+2+.....+2^4\right)+2^6\left(1+2+....+2^4\right)\)
\(\Leftrightarrow M=2.31+2^6.31\)
\(\Leftrightarrow M=31\left(2+2^6\right)⋮31\left(đpcm\right)\)