Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a) A = 2018 x 2020 = (2019 - 1) x (2019 + 1)
Áp dụng hằng đẳng thức thứ ba ta có:
A = 208 x 2020 = \(2019^2-1^2=2019^2-1\)
Vì \(2019^2-1< 2019^2\)
\(\Rightarrow\)A < B
b) A = \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^2-1^2\right)\left(2^2+1^2\right)\left(2^4+1^2\right)\left(2^8+1^2\right)\left(2^{16}+1^2\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)
\(=2^{32}-1\)
Vì \(2^{32}-1< 2^{32}\)
\(\Rightarrow\)A < B
a) Áp dụng hàng đăng thức (a - b) (a + b) = a2 - b2
Ta có : A = 2018.2020 = (2019 - 1) (2019 + 1) = 20192 - 1
Mà B = 20192
Nên A < B
2) b)
Do \(a+b+c=9\Rightarrow\left(a+b+c\right)^2=81\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=81\)
\(\Rightarrow2\left(ab+bc+ac\right)=81-141=-60\)
\(ab+bc+ac=-60:2=-30\)
a, B=x^3 + 3xy +y^3 = x^3 +3xy(x+y)+y^3 (vì x+y=1)
= (x+y)^3
= 1^3 =1
b, (a+b+c)^2 =a^2 +b^2 +c^2 +2ab +2bc +2ac
9^2 = 141 +2(ab+bc+ac)
-60 = 2(ab+bc+ac)
ab+ac+bc=-30
Vậy M=-30
c, N =(x+y)^3 -3(x+y)(x^2+y^2) +2(x^3+y^3)
= x^3 + 3x^2 .y + 3xy^2 + -3(x^3+xy^2 +x^2 .y+y^3)+ 2x^3 +2y^3
= x^3 +3x^2 .y + 3xy^2 - 3x^3 -3xy^2 -3x^2 .y -3y^3 +2x^3 +2y^3
= 0
Vậy N=0 .Chúc bạn học tốt.
b. Câu hỏi của gorosuke - Toán lớp 8 - Học toán với OnlineMath
\(M>2^0.2^2.2^4........2^{256}=2^{2+4+...+256}=2^{258.64}=2^{16512}>N\)
M=(2+1)(2^2+1)(2^4+1)........(2^256+1)+1
=(2+1)(2-1)(2^2+1)(2^4+1).....(2^256+1)+1
=(2^2-1)(2^2+1)(2^4+1)....(2^256+1)+1
=(2^4-1)(2^4+1)......(2^256+1)+1
=...................
=(2^256-1)(2^256+1)+1
=2^512-1+1
=2^512
vậy M=N
bạn thêm 2-1 vào để đc hằng đẳng thức