Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\left(x^3-1\right)\left(x^2+1\right)=0\)
\(< =>\left\{{}\begin{matrix}x^3-1=0\\x^2+1=0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x^3=1\\x^2=-1\left(kxđ\right)\end{matrix}\right.\)
<=>x=1
vậy ...
\(2.\left(2x+6\right)\left(3x^2-12\right)=0\)
\(< =>\left\{{}\begin{matrix}2x+6=0\\3x^2-12=0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}2x=-6\\3x^2=12\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=-3\\x^2=4\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
vậy ...
S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
= (1 + 2) + (22 + 23) + (24 + 25) + (26 + 27)
= (1 + 2) + 22(1 + 2) + 24(1 + 2) + 26(1 + 2)
= (1 + 2)(1 + 22 + 24 + 26)
= 3(1 + 22 + 24 + 26) \(⋮3\)(ĐPCM)
2S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
S = (1+2 ) + (22 + 23 ) + (24 + 25 ) + (26 +27)
S = 3 + 22(1+2) + 24(1+2) + 26(1+2)
S = 3+22.3 + 24.3 + 26 .3
S = 3(1+22 + 24 + 26 ) \(⋮\) 3
=> đpcm
Lời giải:
$n(n+1)\vdots 2$ do là tích của 2 số tự nhiên liên tiếp
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ
$\Rightarrow n^2+n+1\not\vdots 4(1)$
Mặt khác:
Xét số dư của $n$ khi chia cho $5$
Nếu $n=5k+1$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+1)^2+5k+1+1=25k^2+15k+3=5(5k^2+3k)+3\not\vdots 5$
Nếu $n=5k+2$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+2)^2+5k+2+1=25k^2+25k+7=5(5k^2+5k+1)+2\not\vdots 5$
Nếu $n=5k+3$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+3)^2+5k+3+1=25k^2+35k+13=5(5k^2+7k+2)+3\not\vdots 5$
Nếu $n=5k+4$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+4)^2+5k+4+1=25k^2+45k+21=5(5k^2+9k+4)+1\not\vdots 5$
Vậy $n^2+n+1\not\vdots 5$
Vậy.......
Bài 1:
A= 3+ 3^2 + 3^3 +......+ 3^2016
3A= 3^2+3^3+3^4+.......+3^2017
3A-A= 3^2 + 3^3 +3^4+.....+3^2017-( 3+3^2+3^3+.......+3^2016)
2A= 3^2017-3
A= (3^2017-3) :2
Bài 2:
2a+3= 3n
Ta thấy : 3 chia hết cho 3; 3n chia hết cho 3
=> 2a chia hết cho 3 . Mà 2 ko chia hết cho 3 => a chia hết cho 3
=> a= 0
`#3107.101107`
\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)
\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)
\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)
\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)
\(= 3(2 + 2^3 + ... + 2^{2021})\)
Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)
`\Rightarrow A \vdots 3`
Vậy, `A \vdots 3.`