K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2017

phải là M<2/3 mới giải đc

\(M=\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+59}\)

\(=\frac{1}{\left(3+1\right).3:2}+\frac{1}{\left(4+1\right).4:2}+...+\frac{1}{\left(59+1\right).59:2}\)

\(=\frac{1}{6}+\frac{1}{10}+...+\frac{1}{1770}\)

\(=\frac{2}{12}+\frac{2}{20}+...+\frac{2}{3540}\)

\(=2\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{595.60}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{59}-\frac{1}{60}\right)\)

\(=2\left(\frac{1}{3}-\frac{1}{60}\right)\)

\(=\frac{2}{3}-\frac{2}{60}< \frac{2}{3}\)

22 tháng 12 2017

P=\(\left(1-\dfrac{1}{111}\right)\left(1-\dfrac{2}{111}\right)\times...\times\left(1-\dfrac{111}{111}\right)\times...\times\left(1-\dfrac{2009}{111}\right)\)

P=\(\left(1-\dfrac{1}{111}\right)\left(1-\dfrac{2}{111}\right)\times...\times0\times...\times\left(1-\dfrac{2009}{111}\right)\)

P=0

18 tháng 4 2023

Ta có \(M=\dfrac{1}{1+2+3}+\dfrac{1}{1+2+3+4}+...+\dfrac{1}{1+2+3+...+59}\)

              = \(\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{59\cdot60}\)

              = \(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{59}-\dfrac{1}{60}\)

              = \(\dfrac{1}{3}-\dfrac{1}{60}=\dfrac{19}{60}< \dfrac{40}{60}=\dfrac{2}{3}\)

Vậy M < \(\dfrac{2}{3}\)

18 tháng 4 2023

Ta có: 

loading...