\(\Delta\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2020

Giải thích các bước giải:

Gọi I trung điểm CD ⇒ NI=ME và NI//ME

⇒ NIEM hình bình hành.
⇒ IE=NM. Mặt khác: IE=MD (IDEM thang cân do CFED thang cân) và MD=AM (đối xứng) nên NM=AM(1).
Ta có: tam giác ONE= tam giác IDE (vì NO=ID; DE=OE; ∠ NOE= ∠ IDE) ⇒ NE=IE mà NE=NA ( đối xứng) ⇒ AN=IE=NM(2)
Từ (1) và (2)⇒ AM=AN=KM hay tam giác ANM đều.

image

26 tháng 7 2020

Điểm O ở đâu?

26 tháng 7 2020

giải cách nào dễ hiểu hơn đc ko ak mk chx hc đến bucminh

11 tháng 11 2016

H�nh ?a gi�c TenDaGiac1: DaGiac[E, D, 6] ?o?n th?ng f: ?o?n th?ng [E, D] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng g: ?o?n th?ng [D, C] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng h: ?o?n th?ng [C, B] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng i: ?o?n th?ng [B, A] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng j: ?o?n th?ng [A, F] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng k: ?o?n th?ng [F, E] c?a H�nh ?a gi�c TenDaGiac1 ?o?n th?ng l: ?o?n th?ng [B, N] ?o?n th?ng m: ?o?n th?ng [A, M] ?o?n th?ng q: ?o?n th?ng [A, D] ?o?n th?ng r: ?o?n th?ng [A, N] ?o?n th?ng s: ?o?n th?ng [O, N] ?o?n th?ng t: ?o?n th?ng [I, D] ?o?n th?ng a: ?o?n th?ng [O, I] ?o?n th?ng b: ?o?n th?ng [M, O] E = (-1.3, 1.4) E = (-1.3, 1.4) E = (-1.3, 1.4) D = (2.28, 1.44) D = (2.28, 1.44) D = (2.28, 1.44) ?i?m C: DaGiac[E, D, 6] ?i?m C: DaGiac[E, D, 6] ?i?m C: DaGiac[E, D, 6] ?i?m B: DaGiac[E, D, 6] ?i?m B: DaGiac[E, D, 6] ?i?m B: DaGiac[E, D, 6] ?i?m A: DaGiac[E, D, 6] ?i?m A: DaGiac[E, D, 6] ?i?m A: DaGiac[E, D, 6] ?i?m F: DaGiac[E, D, 6] ?i?m F: DaGiac[E, D, 6] ?i?m F: DaGiac[E, D, 6] ?i?m M: Trung ?i?m c?a g ?i?m M: Trung ?i?m c?a g ?i?m M: Trung ?i?m c?a g ?i?m N: Trung ?i?m c?a f ?i?m N: Trung ?i?m c?a f ?i?m N: Trung ?i?m c?a f ?i?m I: Giao ?i?m c?a l, m ?i?m I: Giao ?i?m c?a l, m ?i?m I: Giao ?i?m c?a l, m ?i?m O: Giao ?i?m c?a n, p ?i?m O: Giao ?i?m c?a n, p ?i?m O: Giao ?i?m c?a n, p

a. Ta thấy \(\Delta ABC=\Delta BCD\left(c-g-c\right)\Rightarrow AC=BD;\widehat{ACB}=\widehat{BDC}\)

\(\Rightarrow\widehat{ACM}=\widehat{BDN}\Rightarrow\Delta AMC=\Delta BND\left(c-g-c\right)\)

\(\Rightarrow\widehat{AMC}=\widehat{BND}\Rightarrow\widehat{AMC}+\widehat{AMD}=\widehat{BND}+\widehat{AMD}=180^o\)

\(\Rightarrow\widehat{NIM}+\widehat{NDM}=180^o\Rightarrow\widehat{AIB}=180^o-120^o=60^o.\)

b. Ta thấy ON vuông góc ED nên ON cũng vuông góc AB. Lại có tam giác ANB cân tại N; NO là đường cao nên nó là phân giác. Vậy \(\widehat{ANO}=\widehat{BNO}\)

Lại có AD là trung trực MN  nên \(\widehat{ANO}=\widehat{AMO}\Rightarrow\widehat{BNO}=\widehat{AMO}\Rightarrow\) tứ giác OIMN nội tiếp.

Lại dễ thấy OMDN cũng nội tiếp nên O; I; M ;D; N cùng thuộc đường trong đường kính OD. Vậy \(\widehat{OID}=90^o.\)

(Cô làm theo cách lớp 9)

11 tháng 11 2016

em gửi bài qua fb thầy chữa cho nhé, tìm fb của thầy bằng sđt: 0975705122 nhé.

2 tháng 4 2020

a, Do ABCD là hình bình hành ( gt ) 

=> BAD + ADC = 180 độ ( t/c hbh )

Mà BAD = 120 độ ( gt ) => ADC = 60 độ

Gọi đường phân giác của góc ADC đi qua trung điểm cạnh AB là DI

=> ADI = CDI = 30 độ

Xét tam giác ADI có : DAI + ADI + AID = 180 độ ( tổng 3 góc của 1 tam giác )

=> AID = ADI = 30 độ => Tam giác AID cân

=> AI = AD mà AI = 1/2 AB => AD = 1/2 AB hay AB = 2.AD ( đpcm )

b, CM ADF đều 

Do ABCD là hbh ( gt ) => AB = CD ( t/c hbh )

=> 1/2 AB = 1/2 CD => AI = BI = DF = CF

mà AI = AD => AD = DF

=> tam giác ADF cân tại D có góc ADF = 60 độ ( cmt )

=> ADF đều

CM AFC cân : 

DO tam giác ADF đều ( cmt ) => AF = DF ( t/c tg đều )

mà DF = FC ( gt ) => AF = FC => tam giác AFC cân tại F ( đpcm )

c, Ta có : AF = DF = CF ( cmt ) 

=> AF = 1/2 ( DF +CF ) => AF = 1/2 CD

Xét tam giác ADC có AF là trung tuyến ứng với cạnh CD

và AF = 1/2CD 

=> tam giác ADC vuông tại A ( dấu hiệu nhận biết tam giác vuông )

=> AD vuông góc với AD ( Đpcm )