K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2016

Ta có :  =  

           =  

          

=> ++ = (++) =   = 

=>  ++ =       (1)

Gọi G là trong tâm của tam giác MPR, ta có:

        + =     (2)

Mặt khác : +

                = +

                = +

=>  ++ =(++)+ ++  (3)

Từ (1),(2), (3) suy ra:  ++ = 

Vậy G là trọng tâm của tam giác NQS

21 tháng 9 2018

Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Gọi G là trọng tâm tam giác MPR Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Ta cần đi chứng minh G cũng là trọng tâm của ΔNQS bằng cách chứng minh Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Thật vậy ta có:

Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10

(Vì N, Q, S lần lượt là trung điểm của BC, DE, FA)

Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10

(Vì M, P, R là trung điểm AB, CD, EF)

Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 8 trang 17 sgk Hình học 10 | Để học tốt Toán 10 hay G cũng là trọng tâm của ΔNQS.

Vậy trọng tâm ΔMPR và ΔNQS trùng nhau.

19 tháng 5 2017

Giải:

Gọi \(G\) là trọng tâm của \(\Delta MPR\)\(K\) là trọng tâm của của \(\Delta NQS\)

\(\Rightarrow\) Ta cần chứng minh: \(K\)\(G\) trùng nhau

\(G\) là trọng tâm của \(\Delta MPR\) nên ta có:

\(3\overrightarrow{KG}=\overrightarrow{KM}+\overrightarrow{KP}+\overrightarrow{KR}\)

\(=\dfrac{1}{2}\left(\overrightarrow{KA}+\overrightarrow{KB}+\overrightarrow{KC}+\overrightarrow{KD}+\overrightarrow{KE}+\overrightarrow{KF}\right)\) (t/c trung điểm)

\(=\dfrac{1}{2}\left(\overrightarrow{KB}+\overrightarrow{KC}\right)+\dfrac{1}{2}\left(\overrightarrow{KD}+\overrightarrow{KE}\right)+\dfrac{1}{2}\left(\overrightarrow{KA}+\overrightarrow{KF}\right)\)

\(=\overrightarrow{KN}+\overrightarrow{KQ}+\overrightarrow{KS}=\overrightarrow{0}\) (Vì \(K\) là trọng tâm của của \(\Delta NQS\))

\(\Rightarrow\) Đpcm

20 tháng 5 2017

30 tháng 3 2017

Ta có : =

=

=

=> ++ = (++) = =

=> ++ = (1)

Gọi G là trong tâm của tam giác MPR, ta có:

+ + = (2)

Mặt khác : = +

= +

= +

=> ++ =(++)+ ++ (3)

Từ (1),(2), (3) suy ra: ++ =

Vậy G là trọng tâm của tam giác NQS

5 tháng 8 2019

undefinedhinh hơi rối bạn thông cảm nhé.

5 tháng 8 2019
https://i.imgur.com/mZ33utv.jpg
28 tháng 7 2016

a) Ta có góc BEC = góc BDC = 90o (góc nội tiếp chắn giữa đường tròn)

Suy ra BD \(\perp\) AC và CE \(\perp\) AB. Mà BD cắt CE tại H là trực tâm \(\Delta\) ABC.

Suy ra AH \(\perp\) BC

Vì AH \(\perp\) BC, BD \(\perp\) AC nên góc HFC = góc HDC = 90o.

Suy ra góc HFC + góc HDC = 180o

Suy ra HFCD là tứ giác nội tiếp

\(\Rightarrow\) góc HDC = góc HCD.

28 tháng 7 2016

b) Vì M là trung điểm cạnh huyền của hình tam giác vuông ADH nên MD = MA = MH. Tương tự ta có ME = MA = MH

Suy ra MD = ME

Mà OD = OE nên \(\Delta\) OEM = \(\Delta\) ODM \(\Rightarrow\) góc MOE = góc MOD = \(\frac{1}{2}\) góc EOD

Theo qua hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung, ta có góc ECD = \(\frac{1}{2}\) góc EOD

Theo ý a) ta có góc HFD = góc HCD = góc ECD

\(\Rightarrow\) góc MOD = góc HFD hay góc MOD = góc MFD

Suy ra tứ giác MFOD là tứ giác nội tiếp

\(\Rightarrow\) góc MDO = 180o - góc MPO = 90o \(\Rightarrow\) MD \(\perp\) DO

Chứng minh tương tự ta có MEFO là tứ giác nội tiếp

Suy ra 5 điểm M, E, F, O, D cùng thộc 1 đường tròn.

30 tháng 5 2017

Hỏi đáp Toán

30 tháng 5 2017

20 tháng 7 2018

https://hoc24.vn/hoi-dap/question/35339.html