K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 9 2019

Đặt \(\sqrt{2}+1=a\Rightarrow\sqrt{2}-1=\frac{1}{a}\)

\(\Rightarrow S_k=a^k+\frac{1}{a^k}\) ; \(S_{k+1}=a^{k+1}+\frac{1}{a^{k+1}}\) ;

\(S_1=a+\frac{1}{a}=\sqrt{2}+1+\sqrt{2}-1=2\sqrt{2}\)

\(\Rightarrow S_k.S_{k+1}=\left(a^k+\frac{1}{a^k}\right)\left(a^{k+1}+\frac{1}{a^{k+1}}\right)\)

\(=a^k.a^{k+1}+\frac{a^k}{a^{k+1}}+\frac{a^{k+1}}{a^k}+\frac{1}{a^k.a^{k+1}}\)

\(=a^{2k+1}+\frac{1}{a^{2k+1}}+a+\frac{1}{a}\)

\(=S_{2k+1}+S_1=S_{2k+1}+2\sqrt{2}\)

\(\Rightarrow S_k.S_{k+1}-S_{2k+1}=2\sqrt{2}\)

Thay \(k=2009\) vào ta được:

\(S_{2009}.S_{2010}-S_{4019}=2\sqrt{2}\) (đpcm)

17 tháng 9 2019

tại sao \(\frac{a^k}{a^k+1}\)+\(\frac{a^k+1}{a^k}\)= a + \(\frac{1}{a}\)???

28 tháng 8 2016

Ta có S m-n = (√2 + 1)/(√2 + 1)+ (√2 - 1)m /(√2 - 1)n = (√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)n

Từ đó 

S m+n + S m-n = (√2 + 1)m+n + (√2 - 1)m+n +(√2 + 1)m (√2 - 1)n + (√2 - 1)m (√2 + 1)

= (√2 + 1)m [(√2 + 1)+ (√2 -1)n] + (√2 - 1)m [(√2 - 1)n + (√2 + 1)n]

= [(√2 + 1)n + (√2 - 1)n] [(√2 + 1)m + (√2 - 1)m]

= S​ .S n

28 tháng 8 2016

sorry mk ko bít!!! ^^

6476575756876982525435465658768768676968256346564576576576

7 tháng 9 2017

LƯU Ý

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, hoặc các bài toán linh tinh gây nhiễu diễn đàn. Online Math có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Chuyên mục Giúp tôi giải toán dành cho những bạn gặp bài toán khó hoặc có bài toán hay muốn chia sẻ. Bởi vậy các bạn học sinh chú ý không nên gửi bài linh tinh, không được có các hành vi nhằm gian lận điểm hỏi đáp như tạo câu hỏi và tự trả lời rồi chọn đúng.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

Các câu hỏi không liên quan đến toán lớp 1 - 9 các bạn có thể gửi lên trang web h.vn để được giải đáp tốt hơn.

7 tháng 9 2017

PHải là k chứ

Đặt \(\hept{\begin{cases}x=\sqrt{2}+1\\y=\sqrt{2}-1\end{cases}}\)

=> \(\hept{\begin{cases}xy=1\\x+y=2\sqrt{2}\end{cases}}\)

Ta có \(S_{2009}.S_{2010}=\left(x^{2009}+y^{2009}\right)\left(x^{2010}+y^{2010}\right)=\left(x^{4019}+y^{4019}\right)+\left(xy\right)^{2009}\left(x+y\right)\)

\(=S_{4019}+2\sqrt{2}\)

=> \(S_{2009}.S_{2010}-S_{4019}=2\sqrt{2}\)(dpcm)

5 tháng 7 2016

với \(a>0,b>0\)ta có \(\sqrt{a}.\sqrt{b}\le\frac{a+b}{2}\Rightarrow\frac{1}{\sqrt{a}.\sqrt{b}}\ge\frac{2}{a+b}\)
từ đó ta có : \(\frac{1}{\sqrt{k\left(2016-k\right)}}\ge\frac{2}{k+2016-k}\ge\frac{2}{2016}=\frac{1}{1008},\)với mọi \(k\in N^{\cdot}\)
Suy ra \(S_k\)\(\ge k.\frac{1}{1008}>k.\frac{1}{1018}\)(đpcm).

5 tháng 7 2016

ho qua

12 tháng 6 2019

hỏi khó vậy bn

1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\) 2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC. a) Tính AB, AC ? b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH. c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C)...
Đọc tiếp

1. Chứng minh: \(\left(\dfrac{a-\sqrt{a}}{\sqrt{a}-1}-1\right)\left(\dfrac{a+\sqrt{a}}{\sqrt{a}+1}+1\right)=a-1\)

2. Cho ΔABC nội tiếp đường tròn (O), đường kính BC=6cm. Kẻ AH⊥BC (H∈BC). Biết HC=2HC.

a) Tính AB, AC ?

b) Vẽ điểm D đối xứng với B qua A. CD cắt (O) tại E. Gọi I là giao điểm của BE và AC. Chứng minh: DI // AH.

c) Tiếp tuyến với (O) tại B cắt AC tại G. Chứng minh: DG là tiếp tuyến của đường tròn (C) bán kính 6cm.

3. Vẽ đồ thị hàm số:

a) Vẽ đồ thị hàm số y=2x (d1) & y=-2x+4 (d2).

b) Xác định tọa độ giao điểm I của (d1) & (d2).

4. Cho hai đường tròn (O;R) và (O';R') tiếp xúc ngoài nhau tại A, (R>R'), đường thẳng OO' cắt (O) và (O') tại B và C. Qua trung điểm M của BC vẽ dây DE⊥BC.

a) Chứng minh: BECD là hình thoi.

b) Đoạn DC cắt (O') tại F. Chứng minh: A, E, F thẳng hàng.

c) Chứng minh: MF là tiếp tuyến của đường tròn.

5. Rút gọn:

a) \(5\sqrt{\dfrac{1}{5}}-\dfrac{1}{\sqrt{5}-2}\)

b) \(\sqrt{3-2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

c) \(A=\left(\sqrt{2}+\sqrt{3}+\sqrt{6}+2\right)\left(\sqrt{2}-\sqrt{3}+\sqrt{6}-2\right)\)

d) \(B=\dfrac{\sqrt{x^2}+\sqrt{9x^2}+\sqrt{45x^2}}{\sqrt{x}-\sqrt{16x}-\sqrt{25x}-\sqrt{180x}}\left(x>0\right)\)

6. Cho hàm số \(y=-\dfrac{x}{2}\) (d1) và hàm số \(y=2x-5\) (d2).

a) Xác định tọa độ giao điểm của (d1) & (d2). Vẽ (d1) & (d2) trên cùng mp tọa độ.

b) Cho đường thẳng (d3): y=ax+b. Xác định a và b để (d3) // (d1) và cắt (d2) tại điểm trên trục tung.

7. Từ A ở ngoài đường tròn (O;R) vẽ hai tiếp tuyến AB & AC với (O).

a) Chứng minh: OA là đường trung trực của BC.

b) OA cắt BC tại H. Chứng minh: HO.HA=HB.HC .

c) Đoạn OA cắt đường thẳng (O) tại I. Chứng minh: AB, AC là các tiếp tuyến của đường tròn (I) bán kính IH.

8.Cho \(A\left(1;-2\right),B\left(-2;7\right),C\left(\dfrac{-1}{3\sqrt{2}+3};\sqrt{2}\right)\)

a) Viết phương trình đường thẳng AB.

b) Chứng minh: ba điểm A, B, C thẳng hàng.

9. Cho đường tròn (O) đường kính AB=2R, dây CD⊥AB tại trung điểm H của OB.

a) Chứng minh: OCBD là hình thoi.

b) Tính CD theo R.

c) Chứng minh: ΔACD đều.

d) Gọi E là điểm đối xứng của A qua H. Chứng minh: EC & ED là các tiếp tuyến của đường tròn (O).

10. Tìm ĐKXĐ và rút gọn biểu thức:

\(M=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\right)\left(\dfrac{\sqrt{x}}{2}-\dfrac{1}{2\sqrt{x}}\right)^2\)

11. Trong mp tọa độ Oxy, cho 4 điểm: \(A\left(-2;0\right),B\left(0;1\right),C\left(1;0\right),D\left(0;-2\right)\)

a) Chứng minh: A và B thuộc đường thẳng d1: \(y=\dfrac{1}{2}x+1\)

b) Viết phương trình đường thẳng d2 đi qua C và D.

c) Vẽ d1 và d2, xác định tọa độ giao điểm I của chúng.

12. Cho nửa đường tròn (O) đường kính AB và M∈(O). Vẽ MH⊥AB, đường tròn đường kính MH cắt (O) tại N và cắt MA, MB tại E và F.

a) MEHF là hình gì?

b) Chứng minh: EF là tiếp tuyến của đường tròn ngoại tiếp ΔAEH.

c) MN cắt AB tại S. Chứng minh: MN.MS=ME.MA .

0