Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số cách chọn : \(5\times6\times6\times6=1080\)(vì chỉ có 5 cách chọn số đứng đầu)
b) số cách lập số tự nhiên có 4 chữ số :
-Có 5 cách chọn chữ số làm số đầu (1;2;3;4;5) vì số 0 không đứng đầu được
-Có 5 cách chon số thứ hai vì đã chọn 1 số đứng đầu
-Có 4 cách chọn số thứ ba vì đã chọn hai số đầu
-có 3 cách chon số thứ 4 vì chọn 3 số đầu
Suy ra có số cách chọn : \(5\times5\times4\times3=300\)
A = [n.(n+3)] . [(n+1).(n+2)]
= (n^2+3n).(n^2+3n+2) > (n^2+3n)^2 (1)
Lại có : A = (n^2+3n).(n^2+3n+2) = (n^2+3n+1)^2-1 < (n^2+3n+1)^2 (2)
Từ (1) và (2) => (n^2+3n)^2 < A < (n^2+3n+1)^2
=> A ko phải là số chính phương
Tk mk nha
Lời giải:
$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$
Nếu đây là scp thì $n^2+n+1$ cũng phải là scp
Đặt $n^2+n+1=t^2$ với $t$ tự nhiên
$\Leftrightarrow 4n^2+4n+4=(2t)^2$
$\Leftrightarrow (2n+1)^2+3=(2t)^2$
$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$
$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$
$\Rightarrow n=0$ (trái giả thiết)
Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$
$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$
Ta có đpcm.