K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2017

Để hiểu sâu cần bắt nguồn từ cái này: \(\left(a-b\right)^2\ge0\) {gốc lớp 8}

đẳng thức khi a=b

\(\left(a-b\right)^2=a^2+b^2-2ab\ge0\Rightarrow a^2+b^2\ge2ab\)(1) đẳng thức khi a=b

tương tự có \(c^2+d^2\ge2cd\) (2)

đẳng thức khi c=d

hiển nhiên \(\left\{{}\begin{matrix}a^2+b^2\ge0\\c^2+d^2\ge0\end{matrix}\right.\) với mọi a,b,c,d thuộc R

Nhân (1) với (2) => điều cần chứng minh

Đẳng thức khi a=b và c=d

11 tháng 8 2016

ta có: \(ac+bd\ge2\sqrt{acdb}\Rightarrow\left(ac+db\right)^2\ge4acdb\). nên ta có hệ quả của bất đẳng thức cô-si.
để xảy ra cả bất đẳng thức và hệ quả thì a = b = c = d. 

11 tháng 5 2017

Câu a hạ bậc rồi áp dụng cosa + cosb

Câu b thì mối liên hệ giữa tan với cot là ra

17 tháng 3 2020

tam giác ABC có : \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2R\)

=>\(\left(\frac{a}{sinA}\right)^2=\frac{b}{sinB}\times\frac{c}{sinC}=>a^2.sinB.sinC=sin^2A.b.c\)

=>\(\frac{1}{2}bcsinA=\frac{a^2.sinB.sinC}{2sinA}=>S=\frac{a^2sinB.sinC}{2sin\left(B+C\right)}\)

12 tháng 1 2022

hong ai biết làm luôn buồn dậy huhu

16 tháng 3 2020

\(a,sin^2A=sinB.sinC\)

\(\Leftrightarrow\frac{a^2}{4R^2}=\frac{b}{2R}.\frac{c}{2R}\)

\(\Leftrightarrow\frac{a^2}{4R}=\frac{bc}{4R^2}\Leftrightarrow a^2=bc\)

b, Áp dụng định lý cos:

\(CosA=\frac{b^2+c^2-a^2}{2bc}=\frac{b^2+c^2-bc}{2bc}\ge\frac{2bc-bc}{2bc}=-\frac{1}{2}\)

@Akai Haruma @Nguyễn Việt Lâm @Nguyễn Việt Lâm @Lightning Farron giúp em