K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 1 2022

a. Bạn tự giải

b.

\(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\Rightarrow\) pt có 2 nghiệm pb khi \(m\ne2\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=2m\end{matrix}\right.\)

Do \(x_2\) là nghiệm của pt \(\Rightarrow x_2^2-\left(m+2\right)x_2+2m=0\Rightarrow x_2^2=\left(m+2\right)x_2-2m\)

Thế vào bài toán:

\(\left(m+2\right)x_1+\left(m+2\right)x_2-2m\le3\)

\(\Leftrightarrow\left(m+2\right)\left(x_1+x_2\right)-2m\le3\)

\(\Leftrightarrow\left(m+2\right)^2-2m\le3\)

\(\Leftrightarrow m^2+2m+1\le0\)

\(\Leftrightarrow\left(m+1\right)^2\le0\)

\(\Rightarrow m=-1\)

Δ=(2m-1)^2-4(2m-2)

=4m^2-4m+1-8m+8=(2m-3)^2

Để pt có 2 nghiệm pb thì 2m-3<>0

=>m<>3/2

x1^4+x2^4=17

=>(x1^2+x2^2)^2-2(x1x2)^2=17

=>[(2m-1)^2-2(2m-2)]^2-2(2m-2)^2=17

=>[4m^2-4m+1-4m+4]^2-2(4m^2-8m+4)=17

=>(4m^2-8m+5)^2-2(4m^2-8m+4)=17

Đặt 4m^2-8m+4=a

Ta sẽ có (a+1)^2-2a-17=0

=>a^2-16=0

=>a=4 hoặc a=-4(loại)

=>4m^2-8m=0

=>m=0 hoặc m=2

28 tháng 5 2015

\(\Delta\)' = (m +2)2  - (6m +1) = m2 - 2m + 3 = m2 - 2m + 1 + 2 = ( m - 1)2 + 2 > 0 với mọi m

=> Pt đã cho luôn có 2 nghiệm phân biệt. Gọi là x1; x2

Theo hệ thức Vi - ét ta có: x1 + x2 = 2(m+2) ; x1x2 = 6m +1

Để x1 > 2; x2 > 2 <=> x1 - 2 > 0;  x2 - 2 > 0

<=> (x1 - 2 ) + (x2 - 2)  > 0 và  (x1 - 2).(x2 - 2)  > 0

+)  (x1 - 2 ) + (x2 - 2)  > 0  <=> (x1 + x2 ) - 4   > 0 <=> 2.(m +2) - 4 > 0 <=> 2m > 0 <=> m > 0         (*)

+)  (x1 - 2).(x2 - 2)  > 0 <=> x1x2 - 2(x1 + x2 ) + 4   > 0 <=> 6m + 1 - 4(m +2) + 4 > 0

<=> 2m - 3 > 0 <=> m > 3/2              (**)

Từ (*)(**) => Với m > 3/2 thì PT đã cho có 2 nghiệm phân biệt > 2

11 tháng 8 2017

giúp em giải với 

Cho phương trình: \(8x^2-8x+m^2+1=0\)(*) (x là ẩn số). Định m để phương trình (*) có hai nghiệm \(x_1,x_2\)thỏa điều kiện: \(x_{1^4-x_2^4=x_1^3-x_2^3}\)

Ta có: \(\text{Δ}=\left(1-4m\right)^2-4\left(3-2m\right)\left(1-2m\right)\)

\(=16m^2-8m+4-4\left(2m-3\right)\left(2m-1\right)\)

\(=16m^2-8m+4-4\left(4m^2-2m-6m+3\right)\)

\(=16m^2-8m+4-4\left(4m^2-8m+3\right)\)

\(=16m^2-8m+4-16m^2+32m-12\)

\(=24m-8\)

Để phương trình có hai nghiệm phân biệt thì

\(\left\{{}\begin{matrix}3-2m\ne0\\24m-8>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m\ne3\\24m>8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne\dfrac{3}{2}\\m>\dfrac{1}{3}\end{matrix}\right.\)

\(\Delta=\left(2m-1\right)^2-4\cdot\left(m+1\right)\cdot m\)

\(=4m^2-4m+4-4m^2-4m\)

\(=-8m+4\)

Để phương trình có hai nghiệm phân biệt thì 

\(\left\{{}\begin{matrix}m+1\ne0\\-8m+4>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\-8m>-4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m< \dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m< \dfrac{1}{2}\)

15 tháng 2 2019

cho phương trình x2(m+2)x+3m3=0  với x là ẩn, m là tham số 

15 tháng 2 2019

a,Với m = -1 thì pt trở thành

\(x^2-\left(-1+2\right)x+3\left(-1\right)-3=0\)

\(\Leftrightarrow x^2-x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)

b, Vì pt có 2 nghiệm x1 ; x2 là độ dài 2 cạnh góc vuông nên x1 ; x2 > 0 hay pt có 2 nghiệm dương 

Tức là \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}\Leftrightarrow}\hept{\begin{cases}\left(m+2\right)^2-4\left(3m-3\right)>0\\m+2>0\\3m-3>0\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}m^2+4m+4-12m+12>0\\m>1\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}m^2-8m+16>0\\m>1\end{cases}}\)

                             \(\Leftrightarrow\hept{\begin{cases}\left(m-4\right)^2>0\\m>1\end{cases}}\)

                            \(\Leftrightarrow\hept{\begin{cases}m>1\\m\ne4\end{cases}}\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=m+2\\x_1x_2=3m-3\end{cases}}\)
Vì x1 ; x2 là độ dài 2 cạnh góc vuông của tam giác vuông có độ dài cạnh huyền bằng 5

\(\Rightarrow x_1^2+x_2^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=25\)

\(\Leftrightarrow\left(m+2\right)^2-2\left(3m-3\right)=25\)

\(\Leftrightarrow m^2+4m+4-6m+6=25\)

\(\Leftrightarrow m^2-2m-15=0\)

\(\Leftrightarrow\left(m-5\right)\left(m+3\right)=0\)

\(\Leftrightarrow m=5\left(Do\text{ }\hept{\begin{cases}m>1\\m\ne4\end{cases}}\right)\)

Vậy m = 5