K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

1, Gỉa sử m = 1 

Thay m = 1 vào hpt trên ta được 

\(\left\{{}\begin{matrix}x+y=1\\4x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)

2, Để hệ có nghiệm duy nhất \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)

\(\left\{{}\begin{matrix}m^2x+my=m\\4x+my=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=m-2\\y=1-mx\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{m+2}\\y=1-\dfrac{m}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{m+2}\\y=\dfrac{2}{m+2}\end{matrix}\right.\)

Ta có : \(\dfrac{1}{m+2}-\dfrac{2}{m+2}=1\Rightarrow1-2=m+2\Leftrightarrow-1=m+2\Leftrightarrow m=-3\)(tmđk)

a, Với m = 1 

\(\left\{{}\begin{matrix}x+y=1_{\left(1\right)}\\4x+y=2_{\left(2\right)}\end{matrix}\right.\) 

Lấy (2) - (1) ta được

\(3x=1\Leftrightarrow x=\dfrac{1}{3};\Rightarrow y=1-x=1-\dfrac{1}{3}=\dfrac{2}{3}\) 

Vậy (x,y) = \(\left(\dfrac{1}{3};\dfrac{2}{3}\right)\) 

c, no của hệ là 

\(\left(\dfrac{-1}{m+2};\dfrac{2m+2}{m+2}\right)\\ Theo.bài:\\ x-y=1\\ \Leftrightarrow\dfrac{-1}{m+2}-\dfrac{2m+2}{m+2}=1\\ \Leftrightarrow-1-2m-2=m+2\\ \Leftrightarrow3m=-5\\ m=\dfrac{-5}{3}\)

a: Khi m=-3 thì hệ phương trình sẽ là:

\(\left\{{}\begin{matrix}-3x+2y=1\\x-2\cdot\left(-3\right)\cdot y=-3-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-3x+2y=1\\x+6y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x+2y=1\\3x+18y=-15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}20y=-14\\x+6y=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-\dfrac{7}{10}\\x=-5-6y=-5-6\cdot\dfrac{-7}{10}=\dfrac{42}{10}-5=-\dfrac{8}{10}=-\dfrac{4}{5}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}mx+2y=1\\x-2my=m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2my+m-2\\m\left(2my+m-2\right)+2y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2my+m-2\\2m^2\cdot y+m^2-2m+2y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2my+m-2\\y\left(2m^2+2\right)=-m^2+2m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{-m^2+2m+1}{2m^2+2}\\x=2m\cdot\dfrac{-m^2+2m+1}{2m^2+2}+m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{-m^2+2m+1}{2m^2+2}\\x=\dfrac{m\left(-m^2+2m+1\right)}{m^2+1}+m-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=\dfrac{-m^2+2m+1}{2m^2+2}\\x=\dfrac{-m^3+2m^2+m+\left(m-2\right)\left(m^2+1\right)}{m^2+1}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{-m^3+2m^2+m+m^3+m-2m^2-2}{m^2+1}=\dfrac{2m-2}{m^2+1}\\y=\dfrac{-m^2+2m+1}{2m^2+2}\end{matrix}\right.\)

x-2y=-1

=>\(\dfrac{2m-2}{m^2+1}-\dfrac{2\cdot\left(-m^2+2m+1\right)}{2m^2+2}=1\)

=>\(\dfrac{2m-2}{m^2+1}-\dfrac{-m^2+2m+1}{m^2+1}=1\)

=>\(\dfrac{2m-2+m^2-2m-1}{m^2+1}=1\)

=>\(m^2-3=m^2+1\)

=>-3=1(vô lý)

1 tháng 12 2021

\(\left\{{}\begin{matrix}mx-y=2\\x+my=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+m\left(mx-2\right)=1\\y=mx-2\end{matrix}\right.\\ \Leftrightarrow x\left(m^2+1\right)=2m+1\Leftrightarrow x=\dfrac{2m+1}{m^2+1}\\ \Leftrightarrow y=\dfrac{m\left(2m+1\right)}{m^2+1}-2=\dfrac{2m^2+m-2m^2-2}{m^2+1}=\dfrac{m-2}{m^2+1}\)

Ta có \(x+y=1\Leftrightarrow\dfrac{2m+1+m-2}{m^2+1}=1\)

\(\Leftrightarrow3m-1=m^2+1\\ \Leftrightarrow m^2-3m+2=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

8 tháng 3 2020

\(\hept{\begin{cases}mx+y=4\\x-my=1\end{cases}\Rightarrow\hept{\begin{cases}m+m^2y+y=4\\x=1+my\end{cases}}}\)

\(\Rightarrow\hept{\begin{cases}x=1+my\\y\left(m+1\right)=4-m\end{cases}\Rightarrow\hept{\begin{cases}y=\frac{4-m}{m^2+1}\\x=\frac{m^2+1+4m-m^2}{m^2+1}=\frac{4m+1}{m^2+1}\end{cases}}}\)

\(\Rightarrow x+y=\frac{8}{m^2+1}\Leftrightarrow\frac{4-m+4m+1}{m^2+1}=\frac{8}{m^2+1}\)

<=> 5+3m=8 <=> m=1

\(\Rightarrow\hept{\begin{cases}x=\frac{4+1}{1+1}=\frac{5}{2}\\y=\frac{4-1}{2}=\frac{3}{2}\end{cases}}\)