K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

b) hệ phương trình có nghiệm thỏa mãn 3x-7y=19

=> x,y là nghiệm của hệ phương trình \(\hept{\begin{cases}x-3y=5\left(1\right)\\3x-7y=19\left(2\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow3x-9y=15\Leftrightarrow3x=15+9y\)

thay 3x=15+9y zô (4) ta đc

\(15+9y-7y=19\)

=>\(2y=4=>y=2\)

\(=>x-3.2=5=>x=11\)

thay x=11 , y=6 ta có

\(4.11+2=13.m-32\)

=> m=6

b)\(\hept{\begin{cases}x-3y=5\left(3\right)\\4x+y=13m-32\left(4\right)\end{cases}}\)

\(\left(3\right)\Leftrightarrow4x-12y=20\Leftrightarrow4x=20+12y\)

thay zô (4) , rồi làm biến đổi như câu a) nhá

xong => y=m-4

=> x=5+3y

=> x=5+3(m-4)=3m-7

\(\hept{\begin{cases}x>2\\y< 3\end{cases}\Leftrightarrow\hept{\begin{cases}3m-7>2\\m-4< 3\end{cases}\Leftrightarrow}\hept{\begin{cases}m>3\\m< 7\end{cases}\Leftrightarrow}3< m< 7}\)

c) Thay x=3m-7 ; y=m-4 ta có

\(S=\left(3m-7\right)^2+6\left(m-4\right)+2030\)

\(=9m^2-42m+49+6m-24+2030\)

\(=9m^2-36m+2055=9m^2-2.3m.6+36+2019\)

\(=\left(3m-6\right)^2+2019\ge2019\forall m\)

dấu = xảy ra khi 3m-6=0 => m=2 

zậy ...

3 tháng 1 2018

mọi người ơi giúp mình vs mai ktra r

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số) 1, Giair hpt với a = 1 2, Gỉai hpt với a = \(\sqrt{3}\) 3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0 Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số) 1, Giair và biện luận hpt 2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định Bài 5: Cho hpt...
Đọc tiếp

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số)
1, Giair hpt với a = 1
2, Gỉai hpt với a = \(\sqrt{3}\)
3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0
Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số)
1, Giair và biện luận hpt
2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định
Bài 5: Cho hpt \(\left\{{}\begin{matrix}mx-ny=5\\2x+y=n\end{matrix}\right.\) (m,n là các tham số)
2, Tìm m và n để hệ đã cho có nghiệm x = \(-\sqrt{3}\), y = \(\sqrt{4+2\sqrt{3}}\)
Bài 6: Cho hpt \(\left\{{}\begin{matrix}x+y=3m-2\\2x-y=5\end{matrix}\right.\) (m là tham số)
Tìm m để hpt có nghiệm (x;y) sao cho \(\dfrac{x^2-y-5}{y+1}=4\)
Bài 7: Cho hpt \(\left\{{}\begin{matrix}2x+3y=m+1\\x+2y=2m-8\end{matrix}\right.\) (m là tham số)
2, Tìm m để hệ có nghiệm (x;y) thỏa mãn x=3y
3, Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x.y>0
Bài 9: Cho hpt \(\left\{{}\begin{matrix}2y-x=m+1\\2x-y=m-2\end{matrix}\right.\) (I) (m là tham số)
2, Tính giá trị của m để hpt (I) có nghiệm (x;y) sao cho biểu thức P = \(x^2+y^2\) đạt GTNN
Bài 10: Cho hpt \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\)
Tìm a nguyên để hệ có nghiệm duy nhất (x;y) với x,y nguyên

1
29 tháng 1 2018

Câu nào biết thì mink làm, thông cảm !

Bài 1:

1) Cho \(a=1\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)

2) Cho \(a=\sqrt{3}\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)

Bữa sau làm tiếp


Bài 2:

a: \(\Leftrightarrow\left\{{}\begin{matrix}2-x+y-3x-3y=5\\3x-3y+5x+5y=-2\end{matrix}\right.\)

=>-4x-2y=3 và 8x+2y=-2

=>x=1/4; y=-2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{y-1}=1\\\dfrac{1}{x-2}+\dfrac{1}{y-1}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y-1=5\\\dfrac{1}{x-2}=1-\dfrac{1}{5}=\dfrac{4}{5}\end{matrix}\right.\)

=>y=6 và x-2=5/4

=>x=13/4; y=6

c: =>x+y=24 và 3x+y=78

=>-2x=-54 và x+y=24

=>x=27; y=-3

d: \(\Leftrightarrow\left\{{}\begin{matrix}2\sqrt{x-1}-6\sqrt{y+2}=4\\2\sqrt{x-1}+5\sqrt{y+2}=15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-11\sqrt{y+2}=-11\\\sqrt{x-1}=2+3\cdot1=5\end{matrix}\right.\)

=>y+2=1 và x-1=25

=>x=26; y=-1

a: Khi m=-căn 2 thì hệ sẽ là:

\(\left\{{}\begin{matrix}\left(-\sqrt{2}+1\right)x-y=3\\-\sqrt{2}x+y=-\sqrt{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3-\sqrt{2}\\y=-\sqrt{2}+x\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3-\sqrt{2}\\y=\sqrt{2}\left(3-\sqrt{2}\right)-\sqrt{2}=2\sqrt{2}-2\end{matrix}\right.\)

b: \(\Leftrightarrow\left\{{}\begin{matrix}x\left(2m+1\right)=m+3\\mx+y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2m+1}\\y=m-mx=m-\dfrac{m\left(m+3\right)}{2m+1}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+3}{2m+1}\\y=\dfrac{2m^2+m-m^2-3m}{2m+1}=\dfrac{m^2-2m}{2m+1}\end{matrix}\right.\)

Để x+y>0 thì \(\dfrac{m^2-2m+m+3}{2m+1}>0\)

=>2m+1>0

=>m>-1/2