Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x+my=2\Rightarrow x=2-my$. Thay vào PT(2):
$m(2-my)-2y=1$
$\Leftrightarrow 2m-y(m^2+2)=1$
$\Leftrightarrow y=\frac{2m-1}{m^2+2}$
$x=2-my=2-\frac{2m^2-m}{m^2+2}=\frac{m+4}{m^2+2}$
Vậy hpt có nghiệm $(x,y)=(\frac{m+4}{m^2+2}; \frac{2m-1}{m^2+2})$
Để $x<0; y>0$
$\Leftrightarrow \frac{m+4}{m^2+2}<0$ và $\frac{2m-1}{m^2+2}>0$
$\Leftrightarrow m+4<0$ và $2m-1>0$ (do $m^2+2>0$)
$\Leftrightarrow m< -4$ và $m> \frac{1}{2}$ (vô lý)
Do đó không tồn tại $m$ thỏa mãn đề.
Hệ có nghiệm duy nhất khi: \(\dfrac{1}{m}\ne\dfrac{m}{-2}\Rightarrow m^2\ne-2\) (luôn đúng)
\(\Rightarrow\) Hệ luôn có nghiệm duy nhất với mọi m
Khi đó: \(\left\{{}\begin{matrix}x+my=2\\mx-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x+2my=4\\m^2x-2my=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2+2\right)x=m+4\\y=\dfrac{mx-1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{m+4}{m^2+2}\\y=\dfrac{4m-2}{2\left(m^2+2\right)}\end{matrix}\right.\)
Nghiệm hệ thỏa mãn x<0, y<0 \(\Rightarrow\left\{{}\begin{matrix}\dfrac{m+4}{m^2+2}< 0\\\dfrac{4m-2}{2\left(m^2+2\right)}< 0\end{matrix}\right.\) (1)
Do \(m^2+2>0;\forall m\) nên (1) tương đương:
\(\left\{{}\begin{matrix}m+4< 0\\4m-2< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -4\\m< \dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow m< -4\)
1, Gỉa sử m = 1
Thay m = 1 vào hpt trên ta được
\(\left\{{}\begin{matrix}x+y=1\\4x+y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{3}\\y=\dfrac{2}{3}\end{matrix}\right.\)
2, Để hệ có nghiệm duy nhất \(\dfrac{m}{4}\ne\dfrac{1}{m}\Leftrightarrow m^2\ne4\Leftrightarrow m\ne\pm2\)
\(\left\{{}\begin{matrix}m^2x+my=m\\4x+my=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=m-2\\y=1-mx\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{m+2}\\y=1-\dfrac{m}{m+2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{m+2}\\y=\dfrac{2}{m+2}\end{matrix}\right.\)
Ta có : \(\dfrac{1}{m+2}-\dfrac{2}{m+2}=1\Rightarrow1-2=m+2\Leftrightarrow-1=m+2\Leftrightarrow m=-3\)(tmđk)
a, Với m = 1
\(\left\{{}\begin{matrix}x+y=1_{\left(1\right)}\\4x+y=2_{\left(2\right)}\end{matrix}\right.\)
Lấy (2) - (1) ta được
\(3x=1\Leftrightarrow x=\dfrac{1}{3};\Rightarrow y=1-x=1-\dfrac{1}{3}=\dfrac{2}{3}\)
Vậy (x,y) = \(\left(\dfrac{1}{3};\dfrac{2}{3}\right)\)
c, no của hệ là
\(\left(\dfrac{-1}{m+2};\dfrac{2m+2}{m+2}\right)\\ Theo.bài:\\ x-y=1\\ \Leftrightarrow\dfrac{-1}{m+2}-\dfrac{2m+2}{m+2}=1\\ \Leftrightarrow-1-2m-2=m+2\\ \Leftrightarrow3m=-5\\ m=\dfrac{-5}{3}\)
Bài 1:
Để hpt đã cho vô nghiệm thì m = 1 (lật sách trang 25 là hiểu)
Bài 2 :
Để hpt đã cho có vô số nghiệm thì m = 1
a. Bạn tự giải
b. \(\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m\right)x+2my=m^2-m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6x+2my=2m\\\left(m^2-m-6\right)x=m^2-3m\end{matrix}\right.\)
Hệ có nghiệm duy nhất khi \(m^2-m-6\ne0\Rightarrow m\ne\left\{-2;3\right\}\)
Khi đó: \(\left\{{}\begin{matrix}x=\dfrac{m}{m+2}\\y=\dfrac{m-1}{m+2}\end{matrix}\right.\)
\(x+y^2=1\Leftrightarrow\dfrac{m}{m+2}+\left(\dfrac{m-1}{m+2}\right)^2=1\)
\(\Leftrightarrow m^2-4m-3=0\)
\(\Leftrightarrow...\)
Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{4}\)
=>\(m^2\ne4\)
=>\(m\notin\left\{2;-2\right\}\)
Ta có: \(\left\{{}\begin{matrix}x+my=1\\mx+4y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1-my\\m\left(1-my\right)+4y=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1-my\\m-m^2\cdot y+4y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1-my\\y\left(-m^2+4\right)=2-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=1-my\\y=\dfrac{-\left(m-2\right)}{-\left(m^2-4\right)}=\dfrac{1}{m+2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{1}{m+2}\\x=1-\dfrac{m}{m+2}=\dfrac{m+2-m}{m+2}=\dfrac{2}{m+2}\end{matrix}\right.\)
x+y>-5
=>\(\dfrac{2}{m+2}+\dfrac{1}{m+2}>-5\)
=>\(\dfrac{3}{m+2}+5>0\)
=>\(\dfrac{3+5m+10}{m+2}>0\)
=>\(\dfrac{5m+13}{m+2}>0\)
TH1: \(\left\{{}\begin{matrix}5m+13>0\\m+2>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m>-\dfrac{13}{5}\\m>-2\end{matrix}\right.\)
=>\(m>-2\)
TH2: \(\left\{{}\begin{matrix}5m+13< 0\\m+2< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m< -\dfrac{13}{5}\\m< -2\end{matrix}\right.\)
=>\(m< -\dfrac{13}{5}\)
Vậy: \(\left[{}\begin{matrix}m< -\dfrac{13}{5}\\\left\{{}\begin{matrix}m>-2\\m\ne2\end{matrix}\right.\end{matrix}\right.\)
x=(2m+3)/(m^2+1)
y=(3m-2)/(m^2+1)
y=x-1<=> (3m-2)/(m^2+1)=(2m+3-m^2-1)/(m^2+1)
<=>m^2+m-4=0=>\(\left[\begin{matrix}m=\frac{-1-\sqrt{17}}{2}\\m=\frac{-1+\sqrt{17}}{2}\end{matrix}\right.\)