Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
\(y=\frac{x^2+5}{x-3}\Rightarrow y'=\frac{2x\left(x-3\right)-\left(x^2+5\right)}{\left(x-3\right)^2}=\frac{x^2-6x-5}{\left(x-3\right)^2}< 0\) ; \(\forall x\in\left[3;6\right]\)
Hàm nghịch biến trên đoạn đã cho nên \(y_{min}=y\left(6\right)=\frac{41}{3}\)
2.
\(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=2sin\left(x+\frac{\pi}{3}\right)\)
\(\Rightarrow y'=2cos\left(x+\frac{\pi}{3}\right)=0\Rightarrow x+\frac{\pi}{3}=\frac{\pi}{2}+k\pi\)
\(\Rightarrow x=\frac{\pi}{6}+k\pi\Rightarrow x=\frac{\pi}{6}\)
\(y\left(0\right)=\sqrt{3}\) ; \(y\left(\pi\right)=-\sqrt{3}\) ; \(y\left(\frac{\pi}{6}\right)=2\) \(\Rightarrow y_{max}=y\left(\frac{\pi}{6}\right)=2\)
3.
ĐKXĐ: \(x\le1\)
Đặt \(\sqrt{1-x}=t\ge0\Rightarrow x=1-t^2\)
Pt trở thành: \(1-t^2+t=m\Leftrightarrow-t^2+t+1=m\)
Xét \(f\left(t\right)=-t^2+t+1\Rightarrow f'\left(t\right)=-2t+1=0\Rightarrow t=\frac{1}{2}\)
\(f\left(\frac{1}{2}\right)=\frac{11}{8}\Rightarrow f\left(t\right)\le\frac{11}{8}\Rightarrow m\le\frac{11}{8}\)
Viết lại đề cho rõ ràng bạn ơi, không phiên dịch được :D
Lời giải:
Đặt \(3^{2x}=a\Rightarrow a>0\)
PT trở thành: \(a^2-2a=m\Leftrightarrow a^2-2a-m=0\) (*)
PT ban đầu có hai nghiệm phân biệt tương đương với (*) có hai nghiệm dương phân biệt.
Trước tiên: \(\Delta'=1+m>0\Leftrightarrow m>-1\) (1)
Theo hệ thức Viete: với $a_1,a_2$ là hai nghiệm của (*) thì để $a_1,a_2$ dương thì:
\(\left\{\begin{matrix} a_1+a_2=2>0\\ a_1a_2=-m> 0\end{matrix}\right.\Leftrightarrow m< 0\) (2)
Từ \((1);(2)\Rightarrow -1< m< 0\)
\(\left(2\right)^x-2.2^{2x}-3.2^{x-1}=0\)
Đặt \(2^x\) = t (t>0)
=> \(t-2t^2-\dfrac{3t}{2}=0\)
=> \(\left[{}\begin{matrix}t=\dfrac{-1}{4}\\t=0\end{matrix}\right.\)( loại)
\(pt\Leftrightarrow \dfrac{3^x}{3}.\dfrac{4^x}{4}=12^{9-x}\Leftrightarrow 12^{x-1}=12^{9-x}\)
Suy ra x-1=9-x nên x=5
có nghiem.goi pt tren la f(x) rồi xét hàm số đó
có nha bạn