K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Xét ∆ CAB và  ∆ EMB, ta có:

CA = EM (gt)

∠ (ACB) = ∠ (MEB) = 90 0

CB = EB (tính chất hình vuông)

Suy ra:  ∆ CAB =  ∆ EMB (c.g.c)

⇒ AB = MB (1)

Ta có: AK = DK+ DA

CD = CA + AD

Mà CA = DK nên AK = CD

* Xét  ∆ CAB và  ∆ KIA, ta có:

CA = KI (vì cùng bằng DK)

∠ C =  ∠ K =  90 0

CB = AK (vì cùng bằng CD)

Suy ra:  ∆ CAB =  ∆ KIA (c.g.c)

⇒ AB = AI (2)

Ta có: DH = DK (vì KDHI là hình vuông)

Và EM = DK (gt)

Suy ra: DH = EM

⇒ DH + HE = HE + EM

Hay DE = HM

* Xét  ∆ HIM và  ∆ EMB, ta có: HI = EM (vì cũng bằng DK)

∠ H =  ∠ E =  90 0

HM = EB (vì cùng bằng DE)

Suy ra:  ∆ HIM =  ∆ EMB (c.g.c)

⇒ IM = MB (3)

Từ (1) , (2) và (3) suy ra: AB = BM = AI = IM

Tứ giác ABMI là hình thoi.

Mặt khác, ta có  ∆ ACB =  ∆ MEB (chứng minh trên)

⇒  ∠ (CBA) =  ∠ (EBM)

Mà  ∠ (CBA) +  ∠ (ABE) =  ∠ (CBE) = 90 0

Suy ra:  ∠ (EBM) +  ∠ (ABE) =  90 0  hay  ∠ (ABM) =  90 0

Vậy tứ giác ABMI là hình vuông.

9 tháng 3 2018

a) DDAE = DBAF (c.g.c)

⇒   D A E ^ = B A F ^  và AE = AF

Mà E A D ^ + E A B ^ = 90 0   = >   E A B ^ + B A F ^ = 90 0  

Þ DAEF vuông cân tại A.

b) DEAF vuông cân nên IA = IE = FI (1); DCFE vuông có IC là đường trung tuyến Þ IE = IC = IF (2);

Từ (1) và (2) suy ra Þ IA = IC nên I thuộc trung trực của AC hay I thuộc BD.

c) Do K đối xứng với A qua I nên I là trung điểm của AK.

Mà I là trung điểm của EF(gt) nên AFKE là hình bình hành, DAEF vuông cân tại A nên AI ^ EF.

Vậy AFKE là hình vuông.

15 tháng 7 2017

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ ABM = Δ ADK ( c - g - c ) 

Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

16 tháng 6 2018

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

a) Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ ABM = Δ ADK ( c - g - c )

Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án 

25 tháng 6 2017

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

a) Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án

⇒ Δ ABM = Δ ADK ( c - g - c )

Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:

Bài tập: Hình vuông | Lý thuyết và Bài tập Toán 8 có đáp án 

20 tháng 1 2018

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng đĩnh nghĩa và giả thiết của hình vuông ABCD, ta được

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án ⇒ Δ ABM = Δ ADK ( c - g - c )

Áp dụng kết quả của hai tam giác bằng nhau và giả thiết, ta có:

Bài tập tổng hợp chương 1 Hình học 8 | Lý thuyết và Bài tập Toán 8 có đáp án