K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2019

GT ko co E mà c/m kiur j

4 tháng 9 2015

ABCDMNKHI

Gọi I là trung điểm của DC. AI giao với DK tại H

+) Tứ giác AMCI là hình bình hành ( AM = CI và AM // CI) => AI // CM 

+) Trong tam giác DKC có: HI // CK; I là trung điểm của DC => H là trung điểm của DK  (1)

+) Xét tam giác DCN và  CBM có: CN = BM ; góc DCN = CBM; DC = BC

=> tam giác DCN = CBM ( c - g - c) => góc CDN = MCB 

=> góc CDN + DCM = MCB + DCM = góc DCB = 90=> góc DKC = 90=> DK vuông góc với CM 

mà CM // AI => AI vuông góc với DK (2)

Từ (1)(2) => AI là đường trung trực của DK => AD = AK 

a: XétΔBAC có

M,N lần lượt là trung điểm của BA,BC

=>MN là đường trung bình của ΔBAC
=>MN//AC và MN=AC/2(1)

Xét ΔDAC có

P,Q lần lượt là trung điểm của DC,DA

=>PQ là đường trung bình của ΔDAC

=>PQ//AC và PQ=AC/2(2)

Từ (1),(2) suy ra MN//PQ và MN=PQ

Xét tứ giác MNPQ có

MN//PQ

MN=PQ

Do đó: MNPQ là hình bình hành

b: Xét ΔACD có

P,I lần lượt là trung điểm của CD,CA

=>PI là đường trung bình của ΔACD

=>PI//AD và \(PI=\dfrac{AD}{2}\left(3\right)\)

Xét ΔBAD có

M,K lần lượt là trung điểm của BA,BD

=>MK là đường trung bình của ΔBAD

=>MK//AD và \(MK=\dfrac{AD}{2}\left(4\right)\)

Từ (3) và (4) suy ra MK//IP và MK=IP

Xét tứ giác MKPI có

MK//PI

MK=PI

Do đó: MKPI là hình bình hành

=>MP cắt KI tại trung điểm của mỗi đường(5)

Ta có: MNPQ là hình bình hành

=>MP cắt NQ tại trung điểm của mỗi đường(6)

Từ (5),(6) suy ra MP,KI,NQ đồng quy

6 tháng 11 2023

Cảm ơn bạn

 

 

 

 

 

 

12 tháng 11 2021

a: Xét tứ giác BMNC có

BM//NC

BM=NC

Do đó: BMNC là hình bình hành

mà \(\widehat{MBC}=90^0\)

nên BMNC là hình chữ nhật

21 tháng 11 2023

a: Xét tứ giác AMND có

\(\widehat{MND}=\widehat{ADN}=\widehat{DAM}=90^0\)

=>AMND là hình chữ nhật

b: AMND là hình chữ nhật

=>AM=ND

mà \(AM=\dfrac{AB}{2}\)

nên \(ND=\dfrac{AB}{2}\)

mà AB=CD(ABCD là hình chữ nhật)

nên \(ND=\dfrac{CD}{2}\)

=>N là trung điểm của CD

=>NC=ND

AM=ND

ND=NC

Do đó: AM=NC

Xét tứ giác AMCN có

AM//CN

AM=CN

Do đó: AMCN là hình bình hành

=>AC cắt MN tại trung điểm của mỗi đường

mà O là trung điểm của MN

nên O là trung điểm của AC

9 tháng 11 2015

Gọi K là trung điểm DC, nối AK cắt DI tại O

Chứng mình tam giác DNC = tam giác BMC nên DN vuông góc với CM

Nối AK, AK//CM nên AK cũng vuông góc với DN. tam giác DIC có KO // với CI và K là trung điểm DC nên O là trung điểm DI (đường trung bình tam giác)

Tam giác AID có đường cao AO vừa là trung tuyến nên tam giác AID cân tại A nên AD=AI -> đpcm

23 tháng 11 2021

Tại sao lại => DN vuông góc với CM 

hàng 2 í