Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Trong hình vuông ABCD dựng tam giác EMB đều.
MBA^=ABC^−CBE^−EBM^=90o−15o−60o=15oMBA^=ABC^−CBE^−EBM^=90o−15o−60o=15o
Dễ dàng c/m đc:
ΔΔ CEB=ΔΔ BMA (c.g.c)
\RightarrowBMA^=BEC^=150oBMA^=BEC^=150o
\RightarrowBMA^=EMA^=150oBMA^=EMA^=150o
\Rightarrow
ΔΔ EMA=ΔΔ BMA (c.g.c)
\Rightarrow AE=AB
Tương tự c/m đc DE=DC
\Rightarrow DE=AE(1)
Dễ dàng c/m đc DAE^=60o(2)DAE^=60o(2)
Từ (1) và (2) \Rightarrow Tam giác AED đều.
A B C D F E
vì tam giác ABE đều nên góc ABE = AEB = 600
suy ra goc EBC = 90 - 30 = 600
vì tam giác BFC đều nên goc FBC = FCB = 60o
Ta có tam giác EBF cân tại B (vì BE =BF ) và goc EBF = EBC + CBF = 60+30 = 90o
suy ra goc BEF = \(\frac{180-90}{2}\)=45o
ta có goc AEF = AEB + BEF = 60 + 45 = 105o
ta có tam giac AED cân tại A(vì AD = AE) và goc EAD = 30o nên goc AED = \(\frac{180-30}{2}\)= 75o
Ta có goc AED + goc AEF = 75 + 105 = 180o
suy ra D, E, F thẳng hàng
Do tam giác FCD đều nên FC = DC = CB. Do đó tam giác BCF cân tại C nên \(\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}=\dfrac{180^o-150^o}{2}=15^o=\widehat{EBC}\).
Vậy B, E, F thẳng hàng.
Trúc Giang Bạn cần giải thích đoạn nào vậy?
Tam giác BCF cân tại C nên \(\widehat{FBC}=\widehat{BFC}\).
Do đó \(\widehat{FBC}+\widehat{BFC}+\widehat{FCB}=180^o\Leftrightarrow\widehat{FCB}+2\widehat{FBC}=180^o\Leftrightarrow\widehat{FBC}=\dfrac{180^o-\widehat{FCB}}{2}\).
Do đó \(\widehat{FBC}=\widehat{EBC}\) mà E, F cùng thuộc 1 nửa mf bờ BC nên E, B, F thẳng hàng.