Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
Goi giao diem cua tia AE va DN la G
a.Ta co:\(\widehat{G}=\widehat{AME}\)(cung phu \(\widehat{GEC}\))(1)
\(\widehat{G}+\widehat{ANG}=90^0\)
\(\widehat{AME}+\widehat{AEM}=90^0\)
\(\Rightarrow\widehat{ANG}=\widehat{AEM}\) (2)
Tu (1) va (2) suy ra:\(\Delta AGN=\Delta AME\left(g-g-g\right)\)
Suy ra:\(AN=AE\)(2 canh tuong ung)
b,Ta co:\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)
\(\Rightarrow\frac{1}{AM^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\left(AE=AN\right)\)
Qua A kẻ AK vuông góc với CD và kẻ đường thẳng vuông góc với Ax, cắt CD ở H.
Ta có \(\angle DAB=120^{\circ},\angle HAM=90^{\circ},\angle MAB=15^{\circ}\to\angle DAH=15^{\circ}\).
Suy ra \(\Delta ADH=\Delta ABM\left(g.c.g\right)\to AH=AM.\)
Xét tam giác vuông AHN có AK là đường cao. Theo hệ thức lượng trong tam giác vuông ta có
\(\frac{1}{AH^2}+\frac{1}{AN^2}=\frac{1}{AK^2}\to\frac{1}{AM^2}+\frac{1}{AN^2}=\frac{1}{AK^2}.\)
Để ý rằng tam giác ACD đều (cân có 1 góc bằng 60). Suy ra \(AK^2=AD^2-DK^2=AD^2-\left(\frac{AD}{2}\right)^2=\frac{3}{4}AD^2=\frac{3}{4}AB^2\to AK=\frac{\sqrt{3}}{2}AB.\)
Do đó ta có \(\frac{4}{3AB^2}=\frac{1}{AK^2}=\frac{1}{AM^2}+\frac{1}{AN^2}.\) (ĐPCM)