K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2015

A B C D E F I H

a) Xét \(\Delta\)ADE vuông tại D và \(\Delta\)ABF vuông tại B có:

DE=BF ( giả thiết)

AD=AB( ABCD là hình vuông)

suy ra: \(\Delta\)ADE=\(\Delta\)ABF ( cgv-cgv)

=>AE=AF( 2 cạnh tương ứng )

=> \(\Delta\)AEF cân tại A (1)

\(\Delta\)ADE=\(\Delta\)ABF(cmt)

=> góc AED= góc AFB mà:

góc FAB+ góc AFB=90o

=>góc AED+ góc AFB=90o

mà góc BAE= góc AED ( AB//CD và 2 góc đó là 2 góc so le trong)

nên: góc BAE+góc AFB=90o

=> góc EAF= 90o(2)

từ (1) và (2) suy ra:

\(\Delta\)AEF vuông cân tại A

b)gọi H là giao điểm của AB và EF

ta có:

AB//DC ( ABCD là hình vuông)

=>góc BHI= góc DEI (so le trong)

và góc HBI= góc EDI( so le trong)

mà góc BHI và góc HBI nằm trong \(\Delta\)HBI

góc DEI và góc EDI nằm trong \(\Delta\)EDI nên:

góc HIB= góc DIE

mà I thuộc EF hay EI và FI là 2 tia đối nhau:

=> góc HIB đối đỉnh với góc DEI

=> BI và EI là 2 tia đối nhau

=>I thuộc BD

20 tháng 8 2017

câu b sai rồi

31 tháng 7 2015

chết giờ mới bít bị lừa 

27 tháng 11 2017

lp 7??

10 tháng 1 2019

Bạn xem lại chỗ "CE=BD". 

10 tháng 1 2019

đúng r mà bn

21 tháng 4 2021

N đâu ra?

21 tháng 4 2021

trong đề cương á bạn 

 

1.cho góc nhọn xOy , lấy điểm A thuộc Ox, B thuộc Oy sao cho OA=OB, kẻ AH vuông góc với Oy, BK vuông Ox   Chứng minh tam giác OHK cân   Gọi I là giao diểm của AH và BK. Chứng minh OI là tia phân giác của xOy2. Cho tam giác ABC có B=60 độ, phân giác BD, từ A kẻ Ax // BC cắt tia DB tại E   Chứng minh rằng ABE cân   Tính góc BAE3. Cho tam giác ABC tia phân giác của góc C cắt AB ở D. Trên tia đối của CA lấy E sao...
Đọc tiếp

1.cho góc nhọn xOy , lấy điểm A thuộc Ox, B thuộc Oy sao cho OA=OB, kẻ AH vuông góc với Oy, BK vuông Ox

   Chứng minh tam giác OHK cân

   Gọi I là giao diểm của AH và BK. Chứng minh OI là tia phân giác của xOy

2. Cho tam giác ABC có B=60 độ, phân giác BD, từ A kẻ Ax // BC cắt tia DB tại E

   Chứng minh rằng ABE cân

   Tính góc BAE

3. Cho tam giác ABC tia phân giác của góc C cắt AB ở D. Trên tia đối của CA lấy E sao cho CE=CD

   Chứng minh CD//EB

   Tia phân giác của góc E cắt đường thẳng CD tại F, vẽ CK vuông góc  EF tại K. Chứng minh CK là tia phân giác của góc ECF

4. Cho tam giác ABC cân tại A, trên AB lấy D, trên tia đối của tia CA lấy E sao cho CE=BD, DE cắt BC tại I. Trên tia đối của tia CA lấy E sao cho CE=BD, DE cắt BC tại I. Trên tia đối của tia BC lấy F sao cho BF= CI. Chứng minh rằng

  Tam giác BFD=CIE

  Tam giác DFI cân

  I là trung diểm của DE

 

 

 

1

a) Xét Tàm giác vuông OBK và Tam giác vuông OAH có :

OA = OB (GT)

<O chung 

=> Tam giác vuông OBK = Tam giác vuông OAH   ( cạnh góc vuông - góc nhọn kề )

=> OH = OK  (2CTU)

Xét Tam giác OHK có :

OH = OK 

=> Tam giác OHK cân tại O     (dpcm)

b) Vì Tam giác OBK và Tam giác OAH  (cmt)

=> <OKB = <OHA (2GTU)

TC : OH = OK (cmt)

 OA = OB (GT)

mà OH = OB + BH

    OK = OA + AK 

=> AK = BH 

Xét Tam giác vuông AIK và Tam giác vuông BIH

AK = BH

<OKB = <OHA 

=> Tam giác vuông AIK = Tam giác vuông BIH  ( cạnh góc vuông - góc nhọn kề)

=> AI = BI  (2CTU)

Xét Tam giác OAI = Tam giác OBI có :

OA = OB (GT)

OI chung 

AI = BI (cmt)

=> Tam giác OAI = Tam giác OBI  (c.c.c)

=> <AOI = <BOI  (2GTU)

=> OI là tia phân giác của <xOy    (dpcm)