K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: AE=6*2/3=4cm

DE=căn 6^2+4^2=2*căn 13(cm)

Xét ΔEAD vuông tạiA và ΔEBK vuông tại B có

góc AED=góc BEK

=>ΔEAD đồng dạng với ΔEBK

=>S EAD/S EBK=(EA/EB)^2=4

=>S EBK=1/2*AE*AD/4=1/2*4*6/4=3(cm2)

Xét ΔKDC có EB//DC

nên ΔKBE đồng dạng với ΔKCD

=>S KBE/S KCD=(EB/DC)^2=1/9

=>S KCD=27cm2

b: CH*KD=CD^2+CB*KB

=>CD*CK-CB^2=CB*KB

=>CB(CK-CB)=CB*KB(đúng)

=>ĐPCM

7 tháng 5 2018
https://i.imgur.com/b40yfam.jpg
6 tháng 5 2018

A B C D E K H aed hdc dd

a, xét tam giác ADE và tam giác BKE có:

góc DAE=góc EBK=90 độ

AED=KEB (đối đỉnh)

=> tam giác ADE~tam giác BKE

b, xét tam giác AED và tam giác HDC có:

EAD=DHC=90 độ

AED=HDC (so le trong)

=> AED~HDC

=>AE/HD=AD/HC

=> đpcm

c, ABCD là hình vuông

=> AB=BC=DC=AD=6cm

S CDE= 1/2. 6.6 = (tự tính)

a: Xét ΔEAD và ΔEBK có

góc EAD=góc EBK

góc AED=góc BEK

=>ΔEAD đồng dạng với ΔEBK

b: Xét ΔAED và ΔHDC có

góc AED=góc HDC

góc A=góc DHC
=>ΔAED đồng dạngvới ΔHDC
=>AE/HD=AD/HC

=>AE*HC=HD*AD

d: CD^2+CB*KB

=BC^2+BC*KB

=BC*(BC+KB)

=BC*KC

=CD*KC=CH*KD

24 tháng 5 2018

A B C D H K 1 2 E

a) Xét hai tam giác vuông ADE và BKE có:

\(\widehat{E_1}=\widehat{E_2}\) (đđ)

Do đó: \(\Delta ADE\sim\Delta BKE\) (g.g)

b) Xét hai tam giác vuông ADE và HCD có:

\(\widehat{HDC}=\widehat{E_1}\) (Cùng phụ với \(\widehat{ADE}\) )

Do đó: \(\Delta ADE\sim\Delta HCD\) (g.g)

\(\Rightarrow\dfrac{AD}{HC}=\dfrac{AE}{HD}\Leftrightarrow AD.HD=HC.AE\)

c) Do ABCD là hình vuông nên AB=AD=BC=CD=6 (cm)

\(\Delta ADE\sim\Delta BKE\) nên \(\dfrac{AE}{BE}=\dfrac{AD}{BK}=2\) (Vì \(BE=\dfrac{1}{3}AB\))

\(\Rightarrow BK=\dfrac{AD}{2}=\dfrac{6}{2}=3\) (cm)

\(\Rightarrow CK=BC+BK=6+3=9\) (cm)

Do đó: \(S_{CDK}=\dfrac{CD.CK}{2}=\dfrac{6.9}{2}=27\) (cm2).

d) Ta có: \(\dfrac{CH.KD}{2}=\dfrac{CD.CK}{2}\left(=S_{CDK}\right)\)

\(\Leftrightarrow CH.KD=CD.CK=CD\left(CB+KB\right)=CD.CB+CD.KB=CD.CD+CB.KB=CD^2+CB.KB\) (Vì CD = CB)

25 tháng 4 2017

bạn ơi hình như bạn ghi lộn đúng ko đoạn đường thẳng DE cach CB kéo dài tại K OQ

25 tháng 4 2017

tui ghi đúng r

6 tháng 5 2018

a)  Xét \(\Delta ADE\)và   \(\Delta BKE\)có:

     \(\widehat{DAE}=\widehat{KBE}=90^0\) 

     \(\widehat{AED}=\widehat{BEK}\) (DD)

suy ra:   \(\Delta ADE~\Delta BKE\)(g.g)

b)  Xét \(\Delta ADE\)và  \(\Delta HCD\) có:

     \(\widehat{DAE}=\widehat{CHD}=90^0\)

    \(\widehat{AED}=\widehat{HDC}\) (cùng phụ với góc EDA)

suy ra:   \(\Delta ADE~\Delta HCD\) (g.g)

\(\Rightarrow\)\(\frac{AD}{HC}=\frac{AE}{HD}\)

\(\Rightarrow\)\(AD.HD=HC.AE\)

c)  \(\Delta ADE~\Delta BKE\)(câu a)

\(\Rightarrow\)\(\frac{AD}{BK}=\frac{AE}{BE}=2\) \(\Rightarrow\)\(BK=\frac{AD}{2}=3\) cm

\(S_{CDK}=\frac{CD.CK}{2}=\frac{CD.\left(CB+BK\right)}{2}=27\)CM2

d)  C/m: \(\Delta DHC~\Delta DCK\)(g.g)   \(\Rightarrow\)  \(\frac{CH}{CK}=\frac{DC}{KD}\) \(\Rightarrow\)\(CH.KD=CK.DC\)  (1)

Ta có:   \(CD^2+CB.KB=CD.CB+CD.KB\)  (vì  CD = CB)

           \(=CD\left(CB+KB\right)=CD.CK\)  (2)

Từ (1) và (2) suy ra:   \(CH.KD=CD^2+CB.KB\) (dpcm)