K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2020

a) Xét (O;R) có:

\(\widehat{BCD}\)là góc nt chắn cung BC

\(\widehat{BAC}\)là góc nt chắn cung BC

\(\Rightarrow\widehat{BCD}=\widehat{BAC}=sđ\widebat{BC}\)

Vì dây \(AB\perp CD\)tại M nên \(\widehat{M}=90^o\)

Xét \(\Delta ACM\)và \(\Delta DBM\):

\(\hept{\begin{cases}\widehat{AMC}=\widehat{DMB}=90^o\\\widehat{BAC}=\widehat{BCD}\end{cases}}\)

\(\Rightarrow\Delta ACM\infty\Delta DBM\left(gg\right)\)

\(\Rightarrow\frac{AM}{DM}=\frac{MC}{MB}\Rightarrow AM.MB=MC.DM\)

b) Vì \(\Delta ACM\infty DBM\Rightarrow\widehat{ACM}=\widehat{DBM}\)

Xét \(\left(O;R\right):\)

\(\Delta CDE\)nt (O), cạnh DE là đường kính\(\Rightarrow\Delta CDE\)vuông tại C\(\Rightarrow CD\perp CE\Rightarrow\widehat{DCE}=90^o\)

\(\Delta BDE\)nt \(\left(O\right),\)cạnh DE là đường kính\(\Rightarrow\Delta BDE\)vuông tại B\(\Rightarrow\widehat{DBE}=90^o\)

\(\widehat{MAC}+\widehat{ACM}=90^o\Rightarrow\widehat{MAC}=90^o-\widehat{ACM}\)

Và \(\widehat{ABE}+\widehat{DBM}=90^o\Rightarrow\widehat{ABE}=90^o-\widehat{DBM}\)

Mà \(\widehat{ACM}=\widehat{DBM}\)\(\Rightarrow\widehat{MAC}=\widehat{ABE}\)

Do \(AB\perp CD,CD\perp CE\Rightarrow AB//CE\)

Xét tg ABCE có:

\(AB//CE\)

\(\widehat{MAC}=\widehat{ABE}\)

\(\Rightarrow Tg\)ABCE là hthang cân

c) Áp dụng đ/lí Pi-ta-go lần lượt vào các \(\Delta AMC,\Delta BCM;\Delta BDM;\Delta ADM;\Delta BDE\)có:

\(AM^2=AC^2-CM^2\)(1)

\(MB^2=BC^2-CM^2\)(2)

\(MC^2=BC^2-BM^2\)(3)

\(MD^2=BD^2-BM^2\)(4)

\(DE^2=BD^2+BE^2\)(5)

Công từng vế của (1)(2)(3)(4) ta đc đẳng thức:

\(MA^2+MB^2+MC^2+MD^2=AC^2-CM^2+BC^2-CM^2+BC^2-BM^2+BD^2-BM^2\)

                                                              \(=AC^2+2BC^2-2CM^2-BM^2+BD^2-BM^2\)

                                                               \(=AC^2+2BM^2-BM^2+BD^2-BM^2\)(vì \(BM^2=BC^2-CM^2\))

                                                                \(=AC^2+BD^2\)

                                                                  \(=BE^2+BD^2\)(vì AC=BE do ABCE là hthang cân)

                                                                  \(=DE^2\)(c/m (5))

Mà DE là đường kính của (O) nên DE=2R\(\Rightarrow DE^2=\left(2R\right)^2=4R^2\)

Vậy \(MA^2+MB^2+MC^2+MD^2\)có g/trị ko đổi khi M thay đổi trong (O)

11 tháng 12 2015

Hướng dẫn thôi nha
Câu a) : Vẽ MH vuông góc với AC, MK vuông góc với BD
Ta có MA x MC = MH x AC = 2 x R x MH
Ta CM \(^{ }MA^4\)\(^{ }MC^4\)\(^{ }16R^4\)\(8^{ }R^2MH^2\)
Tương tự MB^4 + MD^4 = 16R^4 - 8R^2 x HK^2
Kq bằng \(^{ }24R^4\)
Câu b) áp dụng cô si cho 4 số kq bằng \(^{ }6R^4\)
Tick cho mình nhaaaaaaaaa :*

16 tháng 10 2021

khó thế 

mới học lớp 3 bài này khó quá anh chị cho bài về bảng nhân đi ạ 000000

29 tháng 5 2018

giúp mk vs ạ mk đang cần gấp

13 tháng 4 2019

IK² = IO² - R² 
IH² = (MH/2)²= (MA²/2MO)² = (MO² - R²)²/(2MO)² 
∆MIK cân <=> IM = IK <=> IH = IK 
<=> (MO² - R²)² = 4MO²(IO² - R²) 
<=> (MO² + R²)² = (2.MO.IO)² 
<=> MO² + R² = 2MO.IO 
<=> R² = MO(2IO - MO) = MO.HO đúng

5 tháng 3 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Ta có: ABD = CBM (cmt)

suy ra: AD = CM

Ta có: DM = BM ( tam giác MBD đều )

mà AM = AD + DM

suy ra: MA = MC + MB

19 tháng 4 2017

Lười quá, chắc mình giải câu c thôi ha.

Vẽ \(OH\) vuông góc \(d\) tại \(H\)\(AB\) cắt \(OH\) tại \(L\)\(OM\) cắt \(AB\) tại \(T\)

H M A B O d L T .

CM được \(OL.OH=OT.OM=R^2\) nên \(L\) cố định. Vậy \(AB\) luôn qua \(L\) cố định.

19 tháng 4 2017

Mơn Trần Quốc Đạt nha

29 tháng 3 2016

a) Tứ giác AOBE nội tiếng ( 2 góc đối = 180 độ ) 

b) tam giác OMH đồng dạng tam giác OIK ( góc hóc) ==> đpcm

c) Có MI vuông góc AB, IA=IB==> tam gisc MAB cân tại M 

đồng thời E cách đều AB, ==> đpcm 

3: góc MHO=góc MAO=góc MBO=90 độ

=>M,A,O,H,B cùng nằm trên đường tròn đường kính OM

=>góc HAB=góc HMB

CE//MB

=>góc HCE=góc HMB=góc HAB

=>ACEH nội tiếp

=>góc CHE=góc CAE

mà góc CAE=góc CDB

nên gó CHE=góc CDB

=>HE//DB

Gọi K là giao của CE và DB

Xét ΔCKD có 

H là trung điểm của CD

HE//KD

=>E là trung điểm của CK

=>EC=EK

Vì CK//MB

nên CE/MF=DE/DF=EK/FB

mà CE=EK

nên MF=FB

=>F là trung điểm của MB