K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

Giải thích các bước giải:

Gọi cạnh hình vuông là a

Vì M là trung điểm DC DM=12aAM=AD2+DM2=a52→DM=12a→AM=AD2+DM2=a52

Ta có : AKKM,ADDMADMKAK⊥KM,AD⊥DM→ADMK nội tiếp

ˆKAM=ˆKDM=45oΔKMA→KAM^=KDM^=45o→ΔKMA vuông cân tại KAK=KM=MA2=a522→AK=KM=MA2=a522 

Do ADMKADMK là tứ giác nội tiếp, theo định lý ptoleme 

AD.KM+DM.AK=AM.DK

Gọi giao của AC và BD là O, cạnh hình vuông là AB=a

=>AC=DB=a căn 2; \(OA=OB=OC=OD=\dfrac{a\sqrt{2}}{2}\)

góc ADM=góc AKM=90 độ

=>AKMD nội tiếp

=>góc AKM=góc KDM=45 độ

=>ΔKAM vuông cân tại K

ΔADM vuông tại D

=>\(AM^2=AD^2+DM^2=\dfrac{5}{4}a^2\)

ΔAKM vuôg cân tại K

=>\(AM^2=2\cdot AK^2\)

=>\(2AK^2=\dfrac{5}{4}a^2\)

=>AK^2=5/8a^2

ΔAOK vuông tại O nên  OK^2=AK^2+AO^2

=>OK=a/2căn 2

=>DK=DO+OK=3/4*a*căn 2

=>DK/DB=3/4

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn...
Đọc tiếp

Bài 1: Cho đường tròn (I; R) nội tiếp tam giác ABC tiếp xúc với BC tại D. Gọi M và N lần lượt là trung điểm của AD và BC. Chứng minh M, I, N thẳng hàng

Bài 2: cho đường tròn tâm O và 3 dây cung song song với nhau là AA', BB', CC'. Chứng minh rằng trực tâm các tam giác ABC'; BCA' và CAB' cùng nằm trên 1 đường thẳng

Bài 3: Trên đường thẳng a cho các điểm A, B, C và trên đường thẳng b cho M, N, P thỏa mãn vectoAB=k. vectoAC và vectoMN=k. vectoMP (k khác 1). Giả sử X, Y, Z là các điểm chia các đoạn thẳng AM, BN và CP theo cùng 1 tỉ số. CMR: X, Y, Z thẳng hàng

Bài 4: Cho góc xOy và 2 điểm M, N di chuyển trên 2 cạnh Ox, Oy thỏa mãn OM=2ON.
a)) CMR: trung điểm I của MN luôn thuộc 1 đường thẳng cố định
b)) Nghiên cứu trường hợp giả thiết thay OM=2ON thành OM=mON với m là 1 hằng số cố định
c)) Nghiên cứu trường hợp thay giả thiết I là trung điểm MN thành giả thiết I là điểm chia MN theo tỉ số k cố định. (toán lớp 10 ạ)

0
NV
21 tháng 3 2022

Talet: \(\dfrac{KM}{AK}=\dfrac{DM}{AB}=\dfrac{1}{3}\Rightarrow KM=\dfrac{1}{3}AK\Rightarrow KM=\dfrac{1}{4}AM\Rightarrow\overrightarrow{KM}=\dfrac{1}{4}\overrightarrow{AM}\) 

Mà \(\overrightarrow{AM}=\overrightarrow{AD}+\overrightarrow{DM}=\overrightarrow{AD}+\dfrac{1}{3}\overrightarrow{AB}\Rightarrow\overrightarrow{KM}=\dfrac{1}{4}\overrightarrow{AD}+\dfrac{1}{12}\overrightarrow{AB}\)

\(\overrightarrow{KN}=\overrightarrow{KM}+\overrightarrow{MC}+\overrightarrow{CN}=\dfrac{1}{4}\overrightarrow{AD}+\dfrac{1}{12}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AB}-\dfrac{1}{2}\overrightarrow{AD}\)

\(=\dfrac{3}{4}\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AD}\)

\(\Rightarrow\overrightarrow{AM}.\overrightarrow{KN}=\left(\overrightarrow{AD}+\dfrac{1}{3}\overrightarrow{AB}\right)\left(\dfrac{3}{4}\overrightarrow{AB}-\dfrac{1}{4}\overrightarrow{AD}\right)=\dfrac{1}{4}AB^2-\dfrac{1}{4}AD^2=0\)

\(\Rightarrow AM\perp KN\Rightarrow\) đường thẳng KN nhận (10;1) là 1 vtpt

Phương trình NK:

\(10\left(x-0\right)+1\left(y-2019\right)=0\Leftrightarrow10x+y-2019=0\)

\(d\left(O;NK\right)=\dfrac{\left|-2019\right|}{\sqrt{10^2+1^2}}=\dfrac{2019}{\sqrt{101}}\)

NV
21 tháng 3 2022

undefined

28 tháng 7 2016

a) Ta có góc BEC = góc BDC = 90o (góc nội tiếp chắn giữa đường tròn)

Suy ra BD \(\perp\) AC và CE \(\perp\) AB. Mà BD cắt CE tại H là trực tâm \(\Delta\) ABC.

Suy ra AH \(\perp\) BC

Vì AH \(\perp\) BC, BD \(\perp\) AC nên góc HFC = góc HDC = 90o.

Suy ra góc HFC + góc HDC = 180o

Suy ra HFCD là tứ giác nội tiếp

\(\Rightarrow\) góc HDC = góc HCD.

28 tháng 7 2016

b) Vì M là trung điểm cạnh huyền của hình tam giác vuông ADH nên MD = MA = MH. Tương tự ta có ME = MA = MH

Suy ra MD = ME

Mà OD = OE nên \(\Delta\) OEM = \(\Delta\) ODM \(\Rightarrow\) góc MOE = góc MOD = \(\frac{1}{2}\) góc EOD

Theo qua hệ giữa góc nội tiếp và góc ở tâm cùng chắn cung, ta có góc ECD = \(\frac{1}{2}\) góc EOD

Theo ý a) ta có góc HFD = góc HCD = góc ECD

\(\Rightarrow\) góc MOD = góc HFD hay góc MOD = góc MFD

Suy ra tứ giác MFOD là tứ giác nội tiếp

\(\Rightarrow\) góc MDO = 180o - góc MPO = 90o \(\Rightarrow\) MD \(\perp\) DO

Chứng minh tương tự ta có MEFO là tứ giác nội tiếp

Suy ra 5 điểm M, E, F, O, D cùng thộc 1 đường tròn.