Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
a: Gọi giao của BM với EF là I, FM và AB là K
Vì ΔADF=ΔBAE(cạnh huyền-cạnh góc vuông)
nên góc DAF=góc ABE
=>góc ABE+góc BAF=góc DAF+góc BAF
=>góc ABE+góc BAF=90 độ
=>AF vuông góc với EB
b: Vì ABCD là hình vuông
nên AC là phân giác của góc BAD
Xét tứ giác AKME có
AK//ME
MK//AE
AM là phân giác của góc KAE
góc KAE=90 độ
Do đó: AKME là hình vuông
=>MK=ME và KB=MF
=>ΔKMB=ΔMEF
=>góc MFE=góc KBM
mà góc KMB=góc IMF
nên góc MFE+góc IMF=góc KBM+góc KMB=90 độ
=>BM vuông góc với EF
c: Xét ΔBEF có
BM,AF là các đường cao
nên BM cắt AF tại trực tâm của tam giác
=>M là trực tâm
=>BM,AF,CE đồng quy
A B C D H M
a, \(AEMF\)là hình chữ nhật nên \(AE=FM\)
\(DFM\)vuông cân tại \(F\)suy ra \(FM=DF\)
\(\Rightarrow AE=DF\)suy ra \(\Delta ADE=\Delta DCF\)
\(\Rightarrow DE=CF\)
b, Tương tự câu a, dễ thấy \(AF=BE\)
\(\Rightarrow\Delta ABF=\Delta BCE\)
\(\Rightarrow\widehat{ABF}=\widehat{BCE}\) nên \(BF\)vuông góc \(CE\)
Gọi \(H\)là giao điểm của \(BF\)và \(DE\)
\(\Rightarrow H\)là trực tâm của tam giác \(CEF\)
Gọi \(N\)là giao điểm của \(BC\)và \(MF\)
\(CN=DF=AE\)và \(MN=EM=AF\)
\(\Delta AEF=\Delta CMN\)
\(\Rightarrow\widehat{AEF}=\widehat{MCN}\)
\(\Rightarrow CM\perp EF\)
\(\Rightarrow\)Ba đường thẳng DE,BF,CM đồng quy tại H
c, \(AE+EM=AE+EB=AB\)không đổi
\(\left(AE-EM\right)^2\ge0\Rightarrow AE^2+AM^2\ge2AE.AM\)
\(\Rightarrow\left(AE+AM\right)^2\ge4AE.AM\Rightarrow\left(\frac{AE+EM}{2}\right)^2=\frac{AB^2}{4}\ge AE.AM=S_{AEMF}\)
Vậy \(S_{AEMF}max\)khi \(AE=EM\)( M là giao AC và và BD )
Câu hỏi của Kunzy Nguyễn - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
cô Quản Lý Hoàng Thị Thu Huyền ơi cô bảo tham khảo ở đâu thế ạ ? sao em ko thấy đường link hay bài đăng j vậy