K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2019

B C M E D 1 2 3 4 A N 1 2 1 2 1 2 1 2 1 2 I

tg là tam giác nha ! 

a ) 

Ta có : gócA1 +  gócBAC = gócDAC ( AB nằm giữa AD và AC ) 

=> gócA1 = gócDAC - gócBAC = 90o - gócBAC ( 1 ) 

Ta có : gócA2 + gócBAC = gócBAE ( AC nằm giữa AB và AE ) 

=> gócA2 = gócBAE - gócBAC = 90o - gócBAC ( 2 ) 

Từ ( 1 ) và ( 2 ) suy ra : gócA1 = gócA2 . 

Xét tgABD và tgACE , có : 

AD = AC ( gt ) 

AB = AE ( gt ) 

gócA1 = gócA2 ( cmt ) 

Do đó : tgABD = tgACE ( c - g - c ) 

=> BD = CE ( 2 cạnh tương ứng ) .

b ) Xét tgABM và tgNCM , có : 

gócM1 = gócM2 

BM = CM ( AM là trung tuyến) 

AM = NM ( gt ) 

Do đó : tgABM = tgNCM ( c - g - c ) 

=> gócC1 = gócB1 ( 2 góc tương ứng ) 

Mà : gócB1 = gócADC + gócA1 ( góc ngoài của tg bằng tổng 2 góc trong không kề với nó ) 

Do đó : gócC1 = gócADC + gócA1  

Ta có : gócC2 + gócDAC + gócADC = 180o  ( tổng 3 góc trong tg ) 

=> gócC2 = 180o -  gócDAC - gócADC    = 180o - 90o - gócADC = 90o - gócADC   

Ta có : gócACN = gócC1 + gócC2 ( DC nằm giữa AC và NC ) 

   =>    gócACN = ( gócADC + gócA1 ) + ( 90o - gócADC ) = gócADC + gócA1 + 90o - gócADC = 90o + gócA1  ( 3 ) 

Ta có : gócDAE = gócBAE + gócA1 ( AB nằm giữa AD và AE ) 

=>       gócDAE =    90o      + gócA1  ( 4 ) 

Từ ( 3 ) và ( 4 ) suy ra : gócACN = gócDAE ( 5 ) 

Ta có : tgABM = tgNCM  ( cmt ) 

=> AB = CN ( 2 cạnh tương ứng ) 

Mà : AB = AE ( gt ) 

Do đó : CN = AE ( 6 ) 

Xét tgADE và tgACN , có : 

AD = AC  ( gt ) 

AE = CN ( cmt ( 6 ) ) 

gócACN = gócDAE ( cmt ( 5 ) )

Do đó : tgADE = tgACN ( c - g - c ) 

c )  Nằm ngoài khả năng của mình rồi ! 

Học tốt nha ! 

7 tháng 1 2019

thanks nhưng em chỉ còn câu C nhưng vẫn cảm ơn anh nhiều

24 tháng 6 2021

Vì t/g FDC là t/g đều nên DF=DC=FC

Mà DC=AD=AB=BC    suy ra FC=BC

Suy ra t/g FCB cân tại C =>góc CFB=góc CBF      (1)

Mặt khác có:  góc FCB =góc DCB + góc DCF = 900 + 600 =1500

Suy ra : góc CFB + góc CBF =300     (2)

Từ (1) và (2) suy ra : góc CFB=góc CBF =150      (3)

Theo bài ra ta có :  góc EBC =150       (4)

Từ (3) và (4) suy ra 3 diểm B ,E ,F thẳng hàng

15 tháng 4 2021

Giống bài tập của Nguyễn Thị Lộc

9 tháng 1 2022

Không vẽ hình vì sợ duyệt nhé.

Tứ giác ADNM nội tiếp nên \(\widehat{ADM}=\widehat{ANM}\)

Tứ giác AMCD là hình vuông nên \(\widehat{ADM}=45^0\)

Từ đó \(\widehat{ANM}=45^0\)

Tứ giác BENM nội tiếp nên \(\widehat{ENM}+\widehat{EBN}=180^0\)\(\Rightarrow\widehat{ENM}=180^0-\widehat{EBM}\)

Tứ giác BMEF là hình vuông nên \(\widehat{EBM}=45^0\)

Từ đó \(\widehat{ENM}=180^0-45^0=135^0\)

Ta có \(\widehat{ANE}=\widehat{ANM}+\widehat{ENM}=45^0+135^0=180^0\)

Từ đó ta có A, N, E thẳng hàng.

4 tháng 11 2018

A B C D M N F O E I J x

a) Xét \(\Delta\)ABM và \(\Delta\)ADN có: ^ABM = ^ADN (=900); AB=AD; BM=DN  => \(\Delta\)ABM = \(\Delta\)ADN (c.g.c)

=> AM=AN (2 canh tương ứng);  ^BAM = ^DAN (2 góc tương ứng). Mà ^BAM + ^DAM = 900

=> ^DAN + ^DAM = ^MAN = 900 => AM vuông góc AN

Ta có: MF//AN; NF//AM; AM vuông góc AN nên ^MAN = ^AMF = ^ANF = 900

Do đó: Tứ giác ANFM là hình chữ nhật. Lại có: AM=AN (cmt) => Tứ giác ANFM là hình vuông (đpcm).

b) Gọi I và J lần lượt là hình chiếu của F trên 2 đường thẳng CD và BC

Tứ giác ANFM là hình vuông => FM=FN

Xét tứ giác CNFM có: ^MCN = ^MFN = 900 => ^FNC + ^CMF = 1800 => ^FNC = ^FMJ hay ^FNI = ^FMJ

Xét \(\Delta\)FIN và \(\Delta\)FJM có: ^FIN = ^FJM (=900); FN=FM; ^FNI = ^FMJ

=> \(\Delta\)FIN = \(\Delta\)FJM (Ch.gn) => FI = FJ (2 cạnh tương ứng)

Xét ^MCN: Có FI và FJ là k/c từ điểm F tới 2 cạnh của góc này; FI=FJ

=> F nằm trên đường phân giác của ^MCN (đpcm).

c) Gọi giao điểm của tia AD và CF là E.

CF là phân giác ^MCN => ^FCN = ^MCN/2 = 450 => ^FCN = ^ACD = 450 

=> \(\Delta\)ACE vuông tại C có đường phân giác CD. Mà CD vuông góc AE

=> \(\Delta\)ACE vuông cân tại C = >CD đồng thời là đường trung tuyến => D là trung điểm AE

Suy ra: OD là đường trung bình \(\Delta\)FAE => OD // EF hay OD // CF (1)

Dễ c/m: BD // CF (Do ^DBC + ^BCF = 450 + 1350 = 1800)                  (2)

Từ (1) và (2) => 3 điểm B;D;O thẳng hàng (đpcm).

d) Ta thấy: B;D;O là 3 điểm thẳng hàng; BD cố định nên O luôn thuộc đường thẳng BD cố định khi M di động trên Cx.

4 tháng 11 2018

câu e đâu bạn :v