Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy \(\widehat{BDC}=45^o\)lại có \(\widehat{CDE}=30^o\)
=>\(\widehat{MAB}=\widehat{MDH}=\widehat{BDC}-\widehat{CDE}=45^o-30^o=15^o\)
( vì cùng chắn cung BH )
=>\(\widehat{BMH}=\widehat{ABM}+\widehat{BAM}=45^o+15^o=60^o\)( Góc ngoài của tam giác AMB )
\(\Delta DEC\)vuông tại C có \(\widehat{CDE}=30^o\left(gt\right)\)
=>\(\widehat{DEC}=60^o\)=> \(\widehat{BEH}=\widehat{DEC}=60^o\left(đđ\right)\)
Tứ giác BMEH có \(\widehat{BEH}=\widehat{BMH}=60^o\)nên BMEH nội tiếp =>\(\widehat{BME}=\widehat{BHE}=90^o\)hay \(ME\perp BD\left(1\right)\)
Mặt khác có E là trực tâm của tam giác DBK=> \(KE\perp BD\left(2\right)\)
Từ (1) và (2) => EM và KE phải trùng nhau hay 3 điểm M. E, K thẳng hàng
O I K A E B H F C D G 1 1 2 2
a)
IO = OB – IB => (I) tiếp xúc trong với (O).
OK = OC – KC => (K) tiếp xúc trong với (O)
IK = OH + KH => (I) tiếp xúc ngoài với (K)
b)
Tứ giác AEHF có \(\widehat{A}=\widehat{E}=\widehat{F}=90^o\) nên là hình chứ nhật
c)
c) \(\Delta AHB\) vuông nên AE.AB = AH2
\(\Delta AHC\)vuông nên AF . AC = AH2
Suy ra AE . AB = AF . AC
d) Gọi G là giao điểm của AH và EF
Tứ giác AEHF là hình chữ nhật => AH = EF
Ta có : GE = GH => \(\Delta GEH\)\(\Rightarrow\widehat{E_1}=\widehat{H_1}\)
Ta lại có \(\Delta IHE\)cân \(\Rightarrow\widehat{E_2}=\widehat{H_2}\)
\(\Rightarrow\widehat{E_1}+\widehat{E_2}=\widehat{H_1}+\widehat{H_2}=90^o\)
Do đó EF là tiếp tuyến của đường tròn (I)
Tương tự, EF là tiếp tuyến của đường tròn (K)
e) - Cách 1:
Ta có: \(EF=AH\le OA\) ( OA có độ dài không đổi )
Do đó EF lớn nhất khi AH = OA
<=> H trùng O hay dây AD đi qua O.
Vậy khi dây AD vuông góc với BC tại O thì EF có độ dài lớn nhất.