K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành

2 tháng 8 2021

Ở đâu vậy bạn

27 tháng 11 2023

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔOAK và ΔOCH có

\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)

OA=OC

\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)

Do đó: ΔOAK=ΔOCH

=>OK=OH

=>O là trung điểm của KH

Xét ΔOAE và ΔOCF có

\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

Do đó: ΔOAE=ΔOCF

=>OE=OF

=>O là trung điểm của EF

Xét tứ giác EKFH có

O là trung điểm chung của EF và KH

=>EKFH là hình bình hành

29 tháng 8 2021

ABCD là hbh=> AD//BC=> góc DAC= góc ACB và AO=OC

Xét tam giác AOE và tam giác COF ta có

góc AOE = góc COF (2 góc đối xừng)

AO=OC

góc DAC= góc ACB

=> tam giác AOE = tam giác COF=> OE=OF

CHứng minh tương tự ta có tam giác AOK= tam giác COH=> OK=OH

Xét tứ giác EHFK có EH và FK là 2 đường chéo cắt nhau tại O

lại có OE=OF
          OH=OK

=> EHFk là hình bình hành (do 2 đường chéo cắt nhau tại trung điểm mỗi đường)

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F saocho AE=EF=FC.a) Tứ giác BEDF là hình gì?b) Chứng minh tam giác CFD= tam giác AEBc) Chứng minh tam giác CFB= tam giác EADBài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.a) Xác định D sao cho BDCA là hình vuông.b) Tính độ dài DA.c) Tính diện tích ABCD.Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.a) Xác định O để ABCD là hình bình...
Đọc tiếp

Bài 5: Cho hình bình hành ABCD. Trên đưởng chéo AC chọn hai điểm E và F sao
cho AE=EF=FC.
a) Tứ giác BEDF là hình gì?
b) Chứng minh tam giác CFD= tam giác AEB
c) Chứng minh tam giác CFB= tam giác EAD

Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?

Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.

Bài 13: Qua đỉnh A của hình vuông ABCD ta kẻ hai đường thẳng Ax, Ay vuông góc
với nhau. Ax cắt cạnh BC tại điểm P và cắt tia đối của tia CD tại điểm Q. Ay cắt tia
đối của tia BC tại điểm R và cắt tia đối của tia DC tại điểm S.
a) Chứng minh các tam giác APS, AQR là các tam giác cân.
b) Gọi H là giao điểm của QR và PS; M, N theo thứ tự là trung điểm của QR, PS.
Chứng minh tứ giác AMHN là hình chữ nhật.
Bài 14: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CA,
AD.
a) Tứ giác MNPQ là hình gì?
b) Gọi M là trung điểm của DB, AD=6, AB=8. Cho DBAM. Tính QM.
Bài 15: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB và AC.
a) Tứ giác BMNC là hình gì? Vì sao?
b) Lấy điểm E đối xứng với M qua N. Chứng minh tứ giác AECM là hình bình
hành.
c) Tứ giác BMEC là hình gì? Vì sao?
d) Tam giác ABC cần thêm điều kiện gì thì tứ giác AECM là hình vuông? Vẽ
hình minh hoạ.

Mong mn giúp mk vs ah

1

đây là nhóm hỏi những bài khó chứ không phải nơi chép bài của những bạn lười nhé

29 tháng 10 2021

Bạn nói hay đó

Đc của ló

 

29 tháng 8 2021

ABCD là hbh=> AD//BC=> góc DAC= góc ACB và AO=OC

Xét tam giác AOE và tam giác COF ta có

góc AOE = góc COF (2 góc đối xừng)

AO=OC

góc DAC= góc ACB

=> tam giác AOE = tam giác COF=> OE=OF

CHứng minh tương tự ta có tam giác AOK= tam giác COH=> OK=OH

Xét tứ giác EHFK có EH và FK là 2 đường chéo cắt nhau tại O

lại có OE=OF
          OH=OK

=> EHFk là hình bình hành (do 2 đường chéo cắt nhau tại trung điểm mỗi đường)