K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2018

A B C D E N F K G H P

Trên tia đối của DC lấy điểm P sao cho BE=DP

Dễ dàng c/m \(\Delta\)ABE = \(\Delta\)ADP (c.g.c) => AE=AP

Và ^BAE = ^DAP => ^BAE + ^DAE = ^DAP + ^DAE => ^PAE = 900

Ta có: ^EAN + ^PAN = ^PAE = 900. Mà ^EAN = 450 => ^EAN = ^PAN = 450

Xét \(\Delta\)ANE & \(\Delta\)ANP có: AE=AP; ^EAN = ^PAN; AN chung => \(\Delta\)ANE = \(\Delta\)ANP (c.g.c)

=> ^APN = ^AEN hay ^APD = ^AEH. Mà ^APD = ^AEB (Do \(\Delta\)ABE = \(\Delta\)ADP)

=> ^AEB = ^AEH => \(\Delta\)ABE = \(\Delta\)AHE (Cạnh huyền góc nhọn) => AB=AH

Và ^BAE = ^HAE hay ^BAG = ^HAG

=> \(\Delta\)AGB = \(\Delta\)AGH (c.g.c) => ^ABG = ^AHG. Tương tự: ^ADK = ^AHK 

=> ^ABG + ^ADK = ^AHG + ^AHK => ^KHG = 900 => \(\Delta\)KHG là tam giác vuông (đpcm).

=> HK2 + HG2 = KG2 . Lại có: HG=BG; HK=DK (Do \(\Delta\)AGB=\(\Delta\)AHG; \(\Delta\)AHK=\(\Delta\)ADK)

=> KG2 = DK2 + BG2 (đpcm).

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0

b: góc FAK=góc FCK=90 độ

=>ACFK nội tiếp

=>góc CAF=góc CKF

a: góc AKF=180 độ-góc ACF=180 độ-90 độ-45 độ=45 độ

=>ΔAKF vuông cân tại A

29 tháng 6 2017

Hình đa giác TenDaGiac1: DaGiac[B, C, 4] Góc α: Góc giữa E, A, E' Góc α: Góc giữa E, A, E' Góc α: Góc giữa E, A, E' Đoạn thẳng f: Đoạn thẳng [B, C] của Hình đa giác TenDaGiac1 Đoạn thẳng g: Đoạn thẳng [C, D] của Hình đa giác TenDaGiac1 Đoạn thẳng h: Đoạn thẳng [D, A] của Hình đa giác TenDaGiac1 Đoạn thẳng i: Đoạn thẳng [A, B] của Hình đa giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [E, A] Đoạn thẳng N: Đoạn thẳng [A, F] Đoạn thẳng N: Đoạn thẳng [A, F] Đoạn thẳng m: Đoạn thẳng [B, D] Đoạn thẳng l: Đoạn thẳng [E, F] Đoạn thẳng p: Đoạn thẳng [A, H] Đoạn thẳng q: Đoạn thẳng [M, F] Đoạn thẳng r: Đoạn thẳng [E, G] B = (-1.34, 1.78) B = (-1.34, 1.78) B = (-1.34, 1.78) C = (3.1, 1.78) C = (3.1, 1.78) C = (3.1, 1.78) Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm D: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm A: DaGiac[B, C, 4] Điểm E: Điểm trên f Điểm E: Điểm trên f Điểm E: Điểm trên f Điểm F: Giao điểm của k, g Điểm F: Giao điểm của k, g Điểm F: Giao điểm của k, g Điểm M: Giao điểm của j, m Điểm M: Giao điểm của j, m Điểm M: Giao điểm của j, m Điểm H: Giao điểm của n, l Điểm H: Giao điểm của n, l Điểm H: Giao điểm của n, l Điểm G: Giao điểm của N, m Điểm G: Giao điểm của N, m

Cô hướng dẫn nhé

a) Do ABCD là hình vuông nên \(\widehat{BEN}=45^o\), vậy thì \(\widehat{BEN}=\widehat{BAN}\) hay ABEN là tứ giác nội tiếp.

Tương tự với tứ giác ADFN.

b) Do ABEN là tứ giác nội tiếp nên \(\widehat{ANE}=180^o-\widehat{ABE}=90^o\) hay \(EN⊥AF\)

Tương tự \(FM⊥AE\)

Xét tam giác AEF có AH, FM, EN là ba đường cao nên chúng đồng quy.

c) Dễ thấy tứ giác EMNF nội tiếp nên \(\widehat{MNE}=\widehat{MFE}\)( Hai góc nội tiếp cùng chắn một cung)

Mà tứ giác ABEN nội tiếp nên \(\widehat{MNE}=\widehat{BAE}\)( Hai góc nội tiếp cùng chắn một cung)

và  \(\widehat{MFE}=\widehat{EAH}\) ( Cùng phụ góc AEF)

Vậy nên \(\widehat{BAE}=\widehat{EAH}\)

Suy ra \(\Delta ABE=\Delta AHE\) (Cạnh huyền góc nhọn) hay AH = AB không đổi.

Lại có AH vuông góc EF tại H nên EF luôn tiếp xúc với đường tròn tâm A, bán kinh AB.

4 tháng 6 2015

chỉnh lại câu 1 tí:

1)
    + Xét tứ giác AEFD :  ADF +AEF = 90 +90 = 180
    Suy ra: Tứ giác AEFD nội tiếp được đường tròn 
    Suy ra:  EAF = EDF hay EAF = EDC
    + Xét tgAEF và tg EDC :  AEF = ECD = 90 VÀ EAF = EDC
    Suy ra: tgAEF ~  tgDCE =>  .AE /AF = CD/DE

2.

Tứ giác AEFD nội tiếp được đường tròn 
=>  EAF = EDF mặt khác  EAF = EDC mặt khác  : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG  suy ra tứ giác AEGH nội tiếp được đường tròn =>  HGE = 90 
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.

3.

Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
    + Xét tam giác HGE :   và OH = OE = 1/2. HE => OH = OE = OG.
    + Xét tg OEK và tg OGK : 
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra  tgOEK =tg OGK (c – c – c) =>  KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).