K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác AECK có

AE//CK

AE=CK

Do đó; AECK là hình bình hành

2: Xét ΔEBC vuông tại B và ΔFCD vuông tại C có

EB=FC

BC=CD

DO đo: ΔEBC=ΔFCD
=>góc BEC=góc CFD

=>góc CFD+góc FCE=90 độ

=>CE vuông góc với DF tại M

3: Xét ΔDMC có

K là trung điểm của DC

KN//MC

DO đo: N là trung điểm của DM

25 tháng 11 2023

1: E là trung điểm của AB

=>\(EA=EB=\dfrac{AB}{2}\)(1)

K là trung điểm của CD

=>\(DK=KC=\dfrac{DC}{2}\)(2)

ABCD là hình vuông

=>AB=DC(3)

Từ (1),(2),(3) suy ra AE=EB=CK=KD

Xét tứ giác AECK có

AE//CK

AE=CK

Do đó: AECK là hình bình hành

2: Xét ΔFCD vuông tại C và ΔEBC vuông tại B có

FC=EB

CD=BC

Do đó: ΔFCD=ΔEBC

=>\(\widehat{FDC}=\widehat{ECB}\)

mà \(\widehat{FDC}+\widehat{DFC}=90^0\)(ΔDFC vuông tại C)

nên \(\widehat{ECB}+\widehat{DFC}=90^0\)

=>DF\(\perp\)CE tại M

3: AECK là hình bình hành

=>AK//CE

AK//CE

CE\(\perp\)DF

Do đó: AK\(\perp\)CE tại N

Xét ΔDMC có

K là trung điểm của DC

KN//MC

Do đó: N là trung điểm của DM

4: Xét ΔADM có

AN là đường cao

AN là đường trung tuyến

Do đó: ΔADM cân tại A

=>AD=AM

mà AD=AB

nên AM=AB

28 tháng 11 2023

a)ta có:

AB=DC mà AE=1/2 AB, KC= 1/2 DC

=>AE=KC

Xét tứ giác AECK, ta có: 

AE//KC(AB//KC và AE thuộc AB và KC thuộc DC)

=>tứ giác AECK là hình bình hành.

b) chỗ DE vuông góc CE có đúng không vậy để mai mình làm tiếp

29 tháng 11 2023

DF VUÔNG GÓC CE, DF vuông góc AK

30 tháng 6 2017

Hình vuông

12 tháng 2 2020

Lời giải:

a)

Theo bài ra ta có FC=BC2;EB=AB2FC=BC2;EB=AB2. Mà BC=ABBC=AB do ABCDABCD là hình vuông

⇒FC=EB⇒FC=EB

Xét tam giác vuông EBCEBC và FCDFCD có:

EB=FCEB=FC

BC=CDBC=CD (theo tính chất hình vuông)

⇒△EBC=△FCD⇒△EBC=△FCD (c.g.c)

⇒ECBˆ=FDCˆ⇒ECB^=FDC^ hay FCMˆ=MDCˆFCM^=MDC^

Do đó:

DMCˆ=1800−(MDCˆ+MCDˆ)=1800−(FCMˆ+MCDˆ)=1800−FCDˆ=1800−900=900DMC^=1800−(MDC^+MCD^)=1800−(FCM^+MCD^)=1800−FCD^=1800−900=900

⇒CE⊥DF⇒CE⊥DF

b) Gọi NN là trung điểm của DCDC. ANAN cắt DFDF tại KK
Ta thấy AE=AB2=AC2=NCAE=AB2=AC2=NC.

AB∥DCAB∥DC (tính chất hình vuông) nên AE∥NCAE∥NC

Tứ giác AECNAECN có 2 cạnh đối song song và bằng nhau nên AECNAECN là hình bình hành.

⇒AN∥EC⇒AN∥EC.

⇒KN∥MC⇒KN∥MC. Theo định lý Ta-let: DKKM=DNNC=1DKKM=DNNC=1

⇒DK=KM⇒DK=KM hay KK là trung điểm của DMDM

Mặt khác từ kết quả phần a ta cũng suy ra AK⊥DMAK⊥DM

Như vậy trong tam giác ADMADM thì AKAK vừa là đường trung tuyến vừa là đường cao nên ADMADM là tam giác cân tại AA, hay AD=AMAD=AM

Ta có đpcm.

12 tháng 2 2020

Bổ sung hình vẽ:
Violympic toán 8

5 tháng 5 2018

Bài giảng học thử

Video không hỗ trỡ trên thiết bị của bạn!

Bài 9: Hình chữ nhật - Phần 1 - Toán 8 - Cô Diệu Linh

Gv. Diệu Linh - 152.5 N lượt xem
27:4

Video không hỗ trỡ trên thiết bị của bạn!

Bài 1. Định lí Ta-lét trong tam giác - Phần 1 - Toán 8 - Thầy Phan Toàn

Gv. Phan Văn Toàn - 1.7 Tr lượt xem
1:36

Video không hỗ trỡ trên thiết bị của bạn!

Bài 4. Đường trung bình của tam giác, của hình thang - Phần 2 - Toán 8 - Thầy Phan Toàn

Gv. Phan Văn Toàn - 1.2 Tr lượt xem
11:21

Video không hỗ trỡ trên thiết bị của bạn!

Bài 3. Hình thang cân - Phần 3 - Toán 8 - Thầy Phan Toàn

Gv. Phan Văn Toàn - 1.2 Tr lượt xem
11:28

Video không hỗ trỡ trên thiết bị của bạn!

Bài 4. Khái niệm hai tam giác đồng dạng - Phần 2 - Toán 8 - Thầy Phan Toàn

Gv. Phan Văn Toàn - 1.8 Tr lượt xem
10:6
Xem thêm các bài giảng khác »