Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔCDF vuông tại C và ΔBCE vuông tại B có
CD=BC
CF=BE
Do đó: ΔCDF=ΔBCE
=>góc CDF=góc BCE
=>góc BCE+góc MFC=góc DFC+góc CDF=90 độ
=>CE vuông góc với DF
b: Gọi Klà trung điểm của CD và N là giao của AK và DF
Xét tứ giác AECK có
AE//CK
AE=CK
Do dó: AECK là hình bình hành
SUy ra: AK=CE và AK//CE
=>AK vuông góc với DF
Xét ΔDMC có
K là trung điểm của DC
KN//MC
Do đó: N là trung điểm của DM
Xét ΔAMD có
AN vừa là đường cao, vừa là đường trung tuyến
nên ΔAMD cân tại A
Lời giải:
a) Xét tứ giác $IBED$ có cặp cạnh đối \(ID, BE\) vừa song song vừa bằng nhau (bằng một nửa độ dài cạnh hình vuông ABCD)
\(\Rightarrow IBED\) là hình bình hành
\(\Rightarrow IB\parallel DE\) hay \(IH\parallel DK\)
Xét tam giác $ADK$ với $IH\parallel DK$ thì theo định lý Ta-let thuận ta có:
\(\frac{AH}{HK}=\frac{AI}{ID}=1\Rightarrow AH=HK\)
b)
Xét tam giác $AIB$ và $DFA$ có:
\(AB=DA\)
\(AI=DF\)
\(\widehat{IAB}=\widehat{FDA}=90^0\)
\(\Rightarrow \triangle AIB=\triangle DFA(c.g.c)\Rightarrow \widehat{IBA}=\widehat{DAF}\)
\(\Rightarrow \widehat{IBA}+\widehat{AIB}=\widehat{DAF}+\widehat{AIB}\Rightarrow 90^0=\widehat{DAF}+\widehat{AIB}\)
hay \(\widehat{IAH}+\widehat{AHI}=90^0\Rightarrow \widehat{AHI}=180^0-90^0=90^0\)
\(\Rightarrow AF\perp IB\) (đpcm)
c)
Tam giác $BAK$ có $BH$ vừa là đường trung tuyến ứng với cạnh $AK$ (do \(AH=HK\)) vừa là đường cao (do \(BH\perp AK\) ) nên $BAK$ là tam giác cân tại $B$
\(\Rightarrow BA=BK\)
Câu 3:
Xét ΔMDC có AB//CD
nên MA/MD=MB/MC(1)
Xét ΔMDK có AI//DK
nên AI/DK=MA/MD(2)
Xét ΔMKC có IB//KC
nên IB/KC=MB/MC(3)
Từ (1), (2) và (3) suy ra AI/DK=IB/KC=MI/MK
Vì AI//KC nên AI/KC=NI/NK=NA/NC
Vì IB//DK nên IB/DK=NI/NK
=>AI/KC=IB/DK
mà AI/DK=IB/KC
nên \(\dfrac{AI}{KC}\cdot\dfrac{AI}{DK}=\dfrac{IB}{DK}\cdot\dfrac{IB}{DC}\)
=>AI=IB
=>I là trung điểm của AB
AI/DK=BI/KC
mà AI=BI
nên DK=KC
hay K là trung điểm của CD
a)
theo đề bài ta có AB=2AD
mà ABCD là hình bình hành ta lại có AB=CD=2AD
lại có E và F theo thứ tự là trung điễm của cạnh AB và CD
=>AE=EB=BC=CF=FD=DA=EF (1)
Theo tính chất hình bình hành ta có AB//CD hay AE//FC (vì E và F theo thứ tự là trung điễm của cạnh AB và CD nên E,F lần lượt thuộc ab và cd) (2)
từ 1 và 2 => AECF là hình bình hành (có 2 cạnh đối song song và bằng nhau)
b)
kẻ EF và DE cắt nhau tại M có
EF//AD
theo (1) ta có AE=FD=DA=EF
=>.Tứ giác AEFD là hình thoi
=> AF vuông góc với DE (2 đường chéo cắt nhau và vuông góc với nhau tại trung điểm của mỗi đường)
c) CM tứ giác EMFN là tứ giác nội tiếp...
( Mình chỉ làm được thế thôi, xin lỗi nhé!!)^^