Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Xét ΔCDF vuông tại C và ΔBCE vuông tại B có
CD=BC
CF=BE
Do đó: ΔCDF=ΔBCE
=>góc CDF=góc BCE
=>góc BCE+góc MFC=góc DFC+góc CDF=90 độ
=>CE vuông góc với DF
b: Gọi Klà trung điểm của CD và N là giao của AK và DF
Xét tứ giác AECK có
AE//CK
AE=CK
Do dó: AECK là hình bình hành
SUy ra: AK=CE và AK//CE
=>AK vuông góc với DF
Xét ΔDMC có
K là trung điểm của DC
KN//MC
Do đó: N là trung điểm của DM
Xét ΔAMD có
AN vừa là đường cao, vừa là đường trung tuyến
nên ΔAMD cân tại A
Lời giải:
a) Xét tứ giác $IBED$ có cặp cạnh đối \(ID, BE\) vừa song song vừa bằng nhau (bằng một nửa độ dài cạnh hình vuông ABCD)
\(\Rightarrow IBED\) là hình bình hành
\(\Rightarrow IB\parallel DE\) hay \(IH\parallel DK\)
Xét tam giác $ADK$ với $IH\parallel DK$ thì theo định lý Ta-let thuận ta có:
\(\frac{AH}{HK}=\frac{AI}{ID}=1\Rightarrow AH=HK\)
b)
Xét tam giác $AIB$ và $DFA$ có:
\(AB=DA\)
\(AI=DF\)
\(\widehat{IAB}=\widehat{FDA}=90^0\)
\(\Rightarrow \triangle AIB=\triangle DFA(c.g.c)\Rightarrow \widehat{IBA}=\widehat{DAF}\)
\(\Rightarrow \widehat{IBA}+\widehat{AIB}=\widehat{DAF}+\widehat{AIB}\Rightarrow 90^0=\widehat{DAF}+\widehat{AIB}\)
hay \(\widehat{IAH}+\widehat{AHI}=90^0\Rightarrow \widehat{AHI}=180^0-90^0=90^0\)
\(\Rightarrow AF\perp IB\) (đpcm)
c)
Tam giác $BAK$ có $BH$ vừa là đường trung tuyến ứng với cạnh $AK$ (do \(AH=HK\)) vừa là đường cao (do \(BH\perp AK\) ) nên $BAK$ là tam giác cân tại $B$
\(\Rightarrow BA=BK\)
a.
Xet 2 tam giac ADE va CBF ta co:
\(\widehat{A}=\widehat{C}\)(2 goc doi cua hinh binh hanh)
\(AE=CF\)
\(AD=BC\)(2 canh doi cua hinh binh hanh)
Do do:\(\Delta ADE=\Delta CBF\left(c-g-c\right)\)
Suy ra:\(DE=BF\)(2 canh tuong ung)
b.Xet 2 tam giac ADF va CBE ta co:
\(\widehat{D}=\widehat{B}\)(2 goc doi cua hinh binh hanh)
\(DF=BE\)
\(AD=CB\)(2 canh doi cua hinh binh hanh)
Do do:\(\Delta ADF=\Delta CBE\left(c-g-c\right)\)
Suy ra:\(AF=CE\)(2 canh tuong ung)
Tu giac AECF co:
\(AE=CF\)
\(AF=CE\)
Nen AECF la hinh binh hanh
Suy ra:\(\widehat{BAF}=\widehat{DCE}\)(2 goc doi cua hinh binh hanh)
Theo chung minh o cau a ta co:\(\Delta ADE=\Delta CBF\)
Suy ra:\(\widehat{AED}=\widehat{CFB}\)(2 goc tuong ung)
Xet 2 tam giac EAM va FCN ta co:
\(AE=CF\)
\(\widehat{BAF}=\widehat{DCE}\)
\(\widehat{AED}=\widehat{CFB}\)
Do do:\(\Delta EAM=\Delta FCN\left(g-c-g\right)\)
Suy ra:\(EM=FN\left(1\right)\)(2 canh tuong ung)
Va \(\widehat{AME}=\widehat{CNF}\)(2 goc tuong ung)
Ma \(\widehat{DMF}=\widehat{AME}\left(2\right)\)
\(\widehat{BNE}=\widehat{CNF}\left(3\right)\)
Tu (2) va (3) suy ra:\(\widehat{DMF}=\widehat{BNE}\)
Tu giac EBFD co:
\(BE=DF\)
\(DE=BF\)(chung minh o cau a)
Nen EBFD la hinh binh hanh
Suy ra;\(\widehat{EDF}=\widehat{FBE}\)(2 goc doi cua hinh binh hanh)
Xet 2 tam giac DMF va BNE ta co:
\(\widehat{DMF}=\widehat{BNE}\)
\(\widehat{EDF}=\widehat{FBE}\)
\(DF=BE\)
Do do:\(\Delta DMF=\Delta BNE\left(c-g-c\right)\)
Suy ra;\(MF=NE\left(4\right)\)(2 canh tuong ung)
Tu (1) va (4) suy ra:EMFN la hinh binh hanh
a: Xét tứ giác AICK có
AI//CK
AI=CK
Do đó: AICK là hình bình hành