1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường...
Đọc tiếp
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
a, ta có \(\widehat{C}=\widehat{B}\) , MB=NC, DC=CB (gt)
⇒DNC ∼ CMB (c-g-c)
⇒\(\widehat{DNC}=\widehat{CMB}\)
mà \(\widehat{CMB}+\widehat{MCB}=90^o\)
⇒\(\widehat{DNC}+\widehat{MCB}=90^o\)
⇒\(\widehat{E}\) vuông
⇒MC ⊥ DN
c, theo pitago tính được DN= \(\sqrt{2^2+4^2}=2\sqrt{5}\)
áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông vào ΔDNC ta có \(\dfrac{1}{EC^2}=\dfrac{1}{DC^2}+\dfrac{1}{NC^2}=\dfrac{1}{4^2}+\dfrac{1}{2^2}=\dfrac{5}{16}\)
⇒EC= \(\sqrt{\dfrac{1}{\dfrac{5}{16}}}=\dfrac{4\sqrt{5}}{5}\)
⇒ME=MC-EC=\(2\sqrt{5}-\dfrac{4\sqrt{5}}{5}=\dfrac{6\sqrt{5}}{5}\)
⇒SΔMDN=\(\dfrac{1}{2}.ME.DN=\dfrac{1}{2}\).\(\dfrac{6\sqrt{6}}{5}\). \(2\sqrt{5}\)= 6(cm)
b,theo định lý sin trong tam giác ta có \(\dfrac{MN}{\sin\left(90^o\right)}=\dfrac{EN}{\sin\left(\widehat{CMN}\right)}\)
⇔\(\dfrac{2\sqrt{2}}{\sin\left(90^o\right)}=\dfrac{EN}{\sin\left(\widehat{CMN}\right)}\)
theo pitago ta tính được EN=\(\sqrt{CN^2-EC^2}=\sqrt{2^2-(\dfrac{4\sqrt{5}}{5})^2}\)=\(\dfrac{2\sqrt{5}}{5}\)
⇒sin\((\widehat{CMN)}\)=\(\dfrac{\sqrt{10}}{10}\)
áp dụng định lý cosin trong tam giác ta có
\(\cos\left(\widehat{CMN}\right)=\dfrac{MN^2+MC^2-CN^2}{2.MN.MC}=\dfrac{\left(2\sqrt{2}\right)^2+\left(2\sqrt{5}\right)^2-2^2}{2.2\sqrt{2}.2\sqrt{5}}=\dfrac{3\sqrt{10}}{10}\)
còn tan và cotan em tự tính nốt nhé