K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

Tự vẽ hình nhé
Dễ thấy ABHE là tứ giác nội tiếp \(\Rightarrow\widehat{ABD}=\widehat{AHD}=45^o\)
Xét tứ giác MEBH có: \(\widehat{MHE}=\widehat{MBE}=45^o\)=> Tứ giác MEBH là tứ giác nội tiếp \(\Rightarrow\widehat{BME}=90^o\Rightarrow EM\perp BD\)
Tự chứng minh đc E là trực tâm của tam giác BDK => \(KE\perp BD\)
Mà \(EM\perp BD\Rightarrow EM\equiv KE\)=> M,E,K thẳng hàng (đpcm)

4 tháng 4 2018

Dễ thấy \(\widehat{BDC}=45^o\)lại có \(\widehat{CDE}=30^o\)

=>\(\widehat{MAB}=\widehat{MDH}=\widehat{BDC}-\widehat{CDE}=45^o-30^o=15^o\)

   ( vì cùng chắn cung BH )

=>\(\widehat{BMH}=\widehat{ABM}+\widehat{BAM}=45^o+15^o=60^o\)( Góc ngoài của tam giác AMB )

\(\Delta DEC\)vuông tại C có \(\widehat{CDE}=30^o\left(gt\right)\)

=>\(\widehat{DEC}=60^o\)=> \(\widehat{BEH}=\widehat{DEC}=60^o\left(đđ\right)\)

Tứ giác BMEH có \(\widehat{BEH}=\widehat{BMH}=60^o\)nên BMEH nội tiếp =>\(\widehat{BME}=\widehat{BHE}=90^o\)hay \(ME\perp BD\left(1\right)\)

Mặt khác có E là trực tâm của tam giác DBK=> \(KE\perp BD\left(2\right)\)

Từ (1) và (2) => EM và KE phải trùng nhau hay 3 điểm M. E, K thẳng hàng

1 tháng 4 2018

30 A B C D H K M E

30 tháng 5 2017

A B C D K E O

  1. theo giả thiết ta có \(BH⊥DE\Rightarrow\widehat{BHD}=90^0\left(1\right)\).ABCD là hình vuông nên \(\widehat{BCD}=90^0\left(2\right)\)từ 1 và 2 ta có BHCD là tứ giác nội tiếp đường tròn tâm (O) có tâm O là trung điểm của BD
  2. Vì VBHCD nội tiếp đường tròn (O) nên\(\widehat{BHC}+\widehat{BDC}=180^0\left(3\right)\)Mà \(\widehat{BHC}+\widehat{CHK=180^0\left(4\right)}\)Từ 3,4 có \(\widehat{BCD}=\widehat{CHK}=45^0\)
  3. Do BHCD nội tiếp đường tròn (O) nên ta có phương tích từ K kẻ đến (O) là như nhau nên :KH.KB=KO2-OB(5) mà KC.KD = KO2 - OB2(6) , từ 5,6 có : KH.KB=KC.KD
26 tháng 4 2018

A B C D M N E

a, Ta có \(\widehat{EMN}=90\)(\(CE\perp AN\))

\(\widehat{EBN}=90\)(ABCD là hình vuông)

=> \(\widehat{EMN}+\widehat{EBN}=90+90=180\)

=> Tg MNBE nội tiếp
b,

26 tháng 4 2018

Hình như câu trả lời của bạn trên nhé

a. bạn trên làm đúng rồi

b. Ta có \(\widehat{AMC}=\widehat{ABC}=90^o\)=> Tứ giác AMBC là tứ giác nội tiếp (2 góc kề nhau cùng nhìn 1 cạnh dưới 1 góc bằng nhau thì tứ giác đó nội tiếp đg tròn)

Do ABCD là hình vuông => \(\widehat{BAC}=45^o\)

Do AMBC là tứ giác nội tiếp => \(\widehat{BAC}=\widehat{BMC}\)( cùng = \(\frac{1}{2}sđ\widebat{BC}\)) => \(\widehat{BMC}=45^o\)

Mà \(\widehat{CMN}=90^o\)do CE \(\perp\)AN (giả thiết) => \(\widehat{BMN}=\widehat{CMN}-\widehat{BMC}=90^o-45^o=45^o\)

c. Vì AE = x => BE = a - x 

Ta có tứ giác MNBE nội tiếp (Cm câu a) => \(\widehat{BEN}=\widehat{BMN}=45^o\)(cùng = \(\frac{1}{2}sđ\widebat{BN}\))

=> tam giác BEN vuông cân tại B => BE = BN = a -x => EN = (a-x)\(\sqrt{2}\)

ở câu a đã CM được tứ giác MNBE nội tiếp đường tròn (I, R = \(\frac{EN}{2}\))

EN mình đã tính ở trên rồi nhé => Tính đc bán kính rồi bạn nha. Thay vào công thức tính diện tích hình tròn là ra thôi !!!

28 tháng 2 2020

A B C D M H E K

Hướng dẫn:

Xét \(\Delta\)DBK có: DH vuông BK; BC vuông DK và BC cắt DH tại E

=> E là trực tâm \(\Delta\)BDK => KM vuông BD (1)

Tứ giác ABHD nội tiếp => ^ABD = ^AHD mà ^ABD = ^DBC => ^AHD = ^DBC => Tứ giác MBHE nội tiếp 

=> ^BME = 90 độ => EM vuông BD (2)

Từ (1); (2) => M; E; K thẳng hàng